Question

A physics student demonstrates Young's double-slit experiment using 632.8 nm light from a HeNe laser. The...

A physics student demonstrates Young's double-slit experiment using 632.8 nm light from a HeNe laser. The laser light passes through two narrowly separated slits that have a spacing of d. The light produces an interference pattern on a screen that is 4.20 meters in front of the slits. The spacing between the m=2 and m=3 maxima as seen on the screen is 12.0 cm.

Determine the spacing between the slits.

For the situation described above, determine the phase difference between the rays from the two slits arriving at a position 18.0 cm above the central maximum. Describe the intensity of light at this position as a fraction of the maximum intensity Imax on the screen.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In Young's double-slit experiment, 632.8 nm light from a HeNe laser passes through the two slits...
In Young's double-slit experiment, 632.8 nm light from a HeNe laser passes through the two slits and is projected on a screen. As expected, a central maximum (constructive interference) is observed at the center point on the screen. Now, a very thin piece of plastic with an index of refraction n=1.48 covers one of the the slits such that the center point on the screen, instead of being a maximum, is dark. Part A Determine the minimum thickness of the...
In a Young's double-slit experiment, light of wavelength ? is sent through the slits. The intensity...
In a Young's double-slit experiment, light of wavelength ? is sent through the slits. The intensity I at angle ?0 from the central bright fringe is lower than the maximum intensity Imax on the screen. Find an expression for the spacing between the slits in terms of ?, ?0, I, and Imax. d=______________________-
(a) Young's double-slit experiment is performed with 525-nm light and a distance of 2.00 m between...
(a) Young's double-slit experiment is performed with 525-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference minimum is observed 7.90 mm from the central maximum. Determine the spacing of the slits (in mm). (b) What are the smallest and largest wavelengths of visible light that will also produce interference minima at this location?
a) Young's double-slit experiment is performed with 525-nm light and a distance of 2.00 m between...
a) Young's double-slit experiment is performed with 525-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference minimum is observed 7.80 mm from the central maximum. Determine the spacing of the slits (in mm). mm (b) What If? What are the smallest and largest wavelengths of visible light that will also produce interference minima at this location? (Give your answers, in nm, to at least three significant figures. Assume the visible light spectrum...
Find the wavelength of the laser through two slits. The distance between the slit to the...
Find the wavelength of the laser through two slits. The distance between the slit to the screen is 1 meter, the two slits are separated by 0.01 mm, and the distance between interference maxima is 6.33 cm. The angle is also 3.63 degrees between the first maxima (center) and the second maxima, with an order of m =1. What color laser is this, and does your answer match up with the wavelength of a HeNe laser?
A double- slit experiment is performed with a coherent (single frequency/wavelength) beam of laser light. 1,...
A double- slit experiment is performed with a coherent (single frequency/wavelength) beam of laser light. 1, suppose that the two slits are separated by a distance D= 0.1 mm; the distance (H) between the center of the pattern and the second ( m=2) bright region is 1.0 cm; and the distance(L) between the screen and the slits is 1.0 m. use the results of this experiment to determine the wavelength of the light. 2. Suppose that the frequency of the...
1. a. Light of wavelength 694.3 nm from a ruby laser is incident on two narrow...
1. a. Light of wavelength 694.3 nm from a ruby laser is incident on two narrow parallel slits cut in a thin sheet of metal. The slits are separated by a distance of 0.088 mm. A screen is placed 1.5 m beyond the slits. Find the intensity, relative to the central maximum, at a point on the screen 1.4 cm to one side of the central maximum. b. In a double-slit experiment, the intensity at the peak of the central...
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an...
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an interference pattern on the screen at a distance L from the slits. What statement is true for the resulting interference pattern if the frequency of the light increases? The distance between maxima increases. Not enough information given. The distance between maxima stays the same. The distance between maxima decreases.
You are doing a double slit experiment with light. One slit is wider than the other,...
You are doing a double slit experiment with light. One slit is wider than the other, so one of the waves is stronger. There is never exact cancellation, or complete destructive interference. On a screen far away you observe a pattern of maxima and minima, and the intensity of the light in a maximum is 4 times as large as that in a minimum. What is the ratio of the widths of the two slits?
Constants Laser light of wavelength 632.8 nm falls normally on a slit that is 0.0260 mm...
Constants Laser light of wavelength 632.8 nm falls normally on a slit that is 0.0260 mm wide. The transmitted light is viewed on a distant screen where the intensity at the center of the central bright fringe is 8.40 W/m^2. Part A Find the maximum number of totally dark fringes on the screen, assuming the screen is large enough to show them all. m_max =    SubmitRequest Answer Part B At what angle does the dark fringe that is most...