Question

A velocity vector 55 ∘ above the positive x-axis has a y-component of 11 m/s ....

A velocity vector 55 ∘ above the positive x-axis has a y-component of 11 m/s .

Part A

What is the value of its x-component?

Express your answer using two significant figures.

vx =   m/s  

SubmitRequest Answer

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object experiences a constant acceleration of 2.00 m/s2 along the -x axis for 2.70 s,...
An object experiences a constant acceleration of 2.00 m/s2 along the -x axis for 2.70 s, attaining a velocity of 18.0 m/s in a direction 47∘∘ from the +x axis. 1) Calculate the magnitude of the initial velocity vector of the object. (Express your answer to two significant figures.) 2) Calculate the direction of the initial velocity vector of the object. Find the angle this vector makes with respect to the +x axis. Use value from -180 to +180. (Express...
The x component of the velocity of an object vibrating along the x-axis obeys the equation...
The x component of the velocity of an object vibrating along the x-axis obeys the equation vx(t) = (0.445 m/s) sin[(25.4 rad/s)t + 0.223] 1) What is the object’s acceleration when its velocity has a maximum positive value? 2) What is the object’s position x when it has a velocity of -0.200 m/s and a positive acceleration value?
IP A particle passes through the origin with a velocity of (6.8m/s)y^. Part A If the...
IP A particle passes through the origin with a velocity of (6.8m/s)y^. Part A If the particle's acceleration is (−5.0m/s2)x^, what are its x and y positions after 5.0 s ? x, y =   m Part B If the particle's acceleration is (−5.0m/s2)x^, what are vx and vy after 5.0 s ? Express your answers using two significant figures separated by a comma. vx, vy =   m/s  
A particle with a charge of 37 μC moves with a speed of 77 m/s in...
A particle with a charge of 37 μC moves with a speed of 77 m/s in the positive x direction. The magnetic field in this region of space has a component of 0.42 T in the positive y direction, and a component of 0.87 T in the positive z direction. Part A: What is the magnitude of the magnetic force on the particle? Express your answer using two significant figures. Part B: What is the direction of the magnetic force...
An electron that has a velocity with x component 1.9 × 106 m/s and y component...
An electron that has a velocity with x component 1.9 × 106 m/s and y component 3.4 × 106 m/s moves through a uniform magnetic field with x component 0.033 T and y component -0.15 T. (a) Find the magnitude of the magnetic force on the electron. (b) Repeat your calculation for a proton having the same velocity.
An electron that has a velocity with x component 2.0 × 106 m/s and y component...
An electron that has a velocity with x component 2.0 × 106 m/s and y component 3.9 × 106 m/s moves through a uniform magnetic field with x component 0.035 T and y component -0.21 T. (a) Find the magnitude of the magnetic force on the electron. (b) Repeat your calculation for a proton having the same velocity.
A particle's trajectory is described by x =(12t3−2t2)m and y =(12t2−2t)m, where t is in s....
A particle's trajectory is described by x =(12t3−2t2)m and y =(12t2−2t)m, where t is in s. What is the particle's speed at t=0s ? What is the particle's speed at t=5.0s ? Express your answer using two significant figures. What is the particle's direction of motion, measured as an angle from the x-axis, at t=0 s ? Express your answer using two significant figures. What is the particle's direction of motion, measured as an angle from the x-axis, at t=5.0s...
You are given a vector in the xy plane that has a magnitude of 80.0 units...
You are given a vector in the xy plane that has a magnitude of 80.0 units and a y component of -57.0 units. What are the two possibilities for its x component? answers using three significant figures separated by a comma. Assuming the x component is known to be positive, specify the magnitude of the vector which, if you add it to the original one, would give a resultant vector that is 80.0 units long and points entirely in the...
You are given a vector in the xy plane that has a magnitude of 87.0 units...
You are given a vector in the xy plane that has a magnitude of 87.0 units and a y component of -55.0 units. a) What are the two possibilities for its x component? Enter your answers using three significant figures separated by a comma. b) Assuming the x component is known to be positive, specify the magnitude of the vector which, if you add it to the original one, would give a resultant vector that is 80.0 units long and...
A particle is at the position (x,y,z)=(1.3,2.5,3.3)m(x,y,z)=(1.3,2.5,3.3)m. It is traveling with a vector velocity (−5.1,3.0,−3.1)m/s(−5.1,3.0,−3.1)m/s. Its...
A particle is at the position (x,y,z)=(1.3,2.5,3.3)m(x,y,z)=(1.3,2.5,3.3)m. It is traveling with a vector velocity (−5.1,3.0,−3.1)m/s(−5.1,3.0,−3.1)m/s. Its mass is 3.6 kg A)What is its vector angular momentum about the origin? Find the xx-component. B)Find the yy-component. C)Find the zz-component..