Question

A bullet is fired toward a block of wood (m1 = 1.17 kg) sitting on a...

A bullet is fired toward a block of wood (m1 = 1.17 kg) sitting on a frictionless surface. The bullet has a mass mb = 30 g, and its initial velocity is 320 m/s in the +x-direction. The bullet embeds itself inside the block of wood. Then the block of wood (with bullet) collides with another block of wood (m2 = 1.20 kg). The collision is elastic. The first block moves off at an angle of -45o with respect to +x, while the second block moves off at an angle of +30o with respect to +x.

a) Write down the momentum equation for the bullet-block collision (using the variables mb for mass of bullet, m1 for the mass of the block of wood, vo for the initial velocity of the bullet, and vpc for the post collision velocity of the bullet-block combo.) DO NOT FILL IN THE NUMBERS – just write out the algebraic equation.

b) Find the post collision velocity of the first block of wood + bullet right after the collision.

c) Write down the momentum equation for the bullet-block combo collision with the second block, again using the variables listed in part a, as well as using m2 for the mass of block 2, vf1 as the final velocity of block 1 (+bullet), and vf2 as the final velocity of block 2. AGAIN DO NOT FILL IN THE NUMBERS – just write out the algebraic equation.

d) Find the final velocity of block 1 (+bullet), remembering to express it as a number and the angle.

e) Find the final velocity of block 2, remembering to express it as a number and the angle.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bullet with mass m1 = 3.00 g is fired into a wooden block of mass...
A bullet with mass m1 = 3.00 g is fired into a wooden block of mass m2 = 1.00 kg, that hangs like a pendulum. The bullet is embedded in the block (complete inelastic collision). The block (with the bullet embedded in it) goes h = 30.0 cm high after collision. Calculate the speed of the bullet before it hit the block.
Conservation of Momentum with a Head-On Collision in a single direction/dimension/axis (Fwd/Bckwd) m1 = 1 kg...
Conservation of Momentum with a Head-On Collision in a single direction/dimension/axis (Fwd/Bckwd) m1 = 1 kg m2 = 2 kg Initial: m1 is moving with vi1 [Fwd]] towards m2 which is at rest. Midst: m1 collides with m2, now both are in motion. Final: m1 moves with new velocity vf1 in the backward direction, m2 moves with new vf2 forwards. How does the law of conservation of momentum apply and what are the applicable formulas for the conservation of momentum...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with speed v1 = 13.0 m/s . It collides with block 2, of mass m2 = 39.0 kg , which was initially at rest. The blocks stick together after the collision. Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the two-block system's...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 59.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the...
A block  (m1=2kg) , initially moving at 15m/s in the x-direction, hits another block (m2=5kg) , initially...
A block  (m1=2kg) , initially moving at 15m/s in the x-direction, hits another block (m2=5kg) , initially at rest. After the collision  m1 moves with a speed of 10m/s at an angle of  87.59? with respect to the original line of motion. Assume a perfectly elastic collision. Determine the final speed of m2 . Determine the magnitude of the direction of m2 .
A 15 g bullet is fired at 610 m/s into a 4 kg wood block that...
A 15 g bullet is fired at 610 m/s into a 4 kg wood block that is at rest on the edge of 75 cm high table. The bullet embeds itself in the block and carries it off the table. a. What are forces acting on the block+bullet? (Or draw a free body diagram of forces acting on the block+bullet.) b. What was the momentum of the bullet before it hit the block? c. Write down the statement of conservation...
A bullet with mass m1 is fired horizontally at a velocity v1 If the bullet strikes...
A bullet with mass m1 is fired horizontally at a velocity v1 If the bullet strikes a block of mass m2 at horizontal distance s1, (a) how far h has it dropped? Assuming the bullet’s horizontal speed remains constant, (b) what will be its resultant speed vR as it hits the block? (c) At what angle Θ below the horizontal does it strike the block? The bullet remains in the block, which slides down a long ramp, which sits at...
Block 1, of mass m1 = 9.70 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 9.70 kg , moves along a frictionless air track with speed v1 = 27.0 m/s . It collides with block 2, of mass m2 = 55.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Part A: Find the magnitude pi of the total initial momentum of the two-block system. Part B: Find vf, the magnitude of the final velocity of the two-block system. Part C: What...
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase...
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase M), suspended like a pendulum, and makes a completely inelastic collision with it. After the impact of the bullet, the block swings up to a maximum height h. Given the values of h = 5.00 cm = 0.0500 m, m = 6.75 g = 0.00675 kg, and M = 2.50 kg, (a) What is the (initial) velocity v_x of the bullet in m/s? (b)...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides inelastically with an initially stationary block of mass m2=18.0 kg. The two objects become stuck together. Find the final velocity of the two blocks. B) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides elastically with an initially stationary block of mass m2=18.0 kg. After the collision, block m2 is moving to the right...