Question

A truck of mass M and a car of mass m are moving along a level...

A truck of mass M and a car of mass m are moving along a level roadway in opposite directions at the same velocity. The car and the truck are involved in a head-on collision. Assume that neither driver had time to apply the brakes before or during the collision. Immediately after the collision the two vehicles are stuck to each other, and the wheels are still rolling.

Part 1

During the collision, the force on the car due to the truck points (left or right) and its magnitude is (smaller than or the same as or larger than) the magnitude of the force on the truck due to the car.

Part 2

During the collision, the acceleration of the car points (left or right) and its magnitude is (smaller than or the same as or larger than) the magnitude of the acceleration of the truck.

Part 3

During the collision, the change in momentum of the car points (left or right) and its magnitude is (smaller than or the same as or larger than) the magnitude of the change in momentum of the truck.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two balls moving with the same speed of v = 0.48 m/s but in opposite directions...
Two balls moving with the same speed of v = 0.48 m/s but in opposite directions undergo a head-on collision. Ball A has mass mA = 2.6 kg and is traveling to the left, while ball B has mass mB = 1.3 kg and is traveling to the right. The balls are shown just before the collision in the figure below. (a) Which ball has the larger momentum (in magnitude) before the collision? Ball A Ball B Both balls have...
Suppose a small car collides with a truck that has a mass five times larger. Is...
Suppose a small car collides with a truck that has a mass five times larger. Is the force the car does on the truck smaller, the same or larger than the force the truck exerts on the car. Please justify your answer. Furthermore, what is the relationship between the impulse and the change in momentum of an object?
truck with a mass of 1840 kg and moving with a speed of 17.0 m/s rear-ends...
truck with a mass of 1840 kg and moving with a speed of 17.0 m/s rear-ends a 732 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. (a) Calculate the initial momentum of the truck (in kg m/s). kg m/s (b) Calculate the final velocities (in m/s) for the truck and the car. vtf = m/s vcf...
A BMW of mass 2000 kg is traveling at 42 m/s. It approaches a 1000 kg...
A BMW of mass 2000 kg is traveling at 42 m/s. It approaches a 1000 kg Volkswagen going 25 m/s in the same direction and strikes it in the rear. Neither driver applies the brakes. Ignore the relatively small force on the cars due to the road and due to air resistance. (a) If the collision slows the BMW down to 33 m/s, what is the speed of the VW after the collision? (b) During the collision, which car exerts...
A BMW of mass 2000 kg is traveling at 42 m/s. It approaches a 1000 kg...
A BMW of mass 2000 kg is traveling at 42 m/s. It approaches a 1000 kg Volkswagen going 25 m/s in the same direction and strikes it in the rear. Neither driver applies the brakes. Ignore the relatively small force on the cars due to the road and due to air resistance. (a) If the collision slows the BMW down to 33 m/s, what is the speed of the VW after the collision? (b) During the collision, which car exerts...
A car travelling at 12 m/s into a stationary truck of about 10 times the cars...
A car travelling at 12 m/s into a stationary truck of about 10 times the cars mass. a. If the collision was completely inelastic, what velocity would the two travel at if the stuck together? b. If the collision was completely elastic, what would be the velocities of the car and truck after the collision? c. In order to exert a force of only 3500N on the truck during the collision, how much time would the collision have to take?
A large truck collides with a small car. Both vehicles experience a force during the collision....
A large truck collides with a small car. Both vehicles experience a force during the collision. Which one of the following statements is true? The force on the truck is greater in magnitude than the force on the car. The force on the car is greater in magnitude than the force on the truck. The truck and the car experience the same magnitude of force. The vehicle that is moving faster before the collision experiences more force.
A car of mass 772 kg is traveling 26.4 m/s when the driver applies the brakes,...
A car of mass 772 kg is traveling 26.4 m/s when the driver applies the brakes, which lock the wheels. The car skids for 4.47 s in the positive x-direction before coming to rest. HINT (a) What is the car's acceleration (in m/s2)? (Indicate the direction with the sign of your answer.) m/s2 (b) What magnitude force (in N) acted on the car during this time? N (c) How far (in m) did the car travel? m
The center of mass of a car of mass M is located midway between the front-...
The center of mass of a car of mass M is located midway between the front- and rear wheels, at a distance h from the ground. The distance between the front and the rear wheels is d. a) The car is moving forward on a horizontal surface with a constant acceleration A. In a system that is accelerating with the car, what can be said about the horizontal forces that is acting on the car? b) What is the ratio...
A car of mass 2500 kg collides with a truck of mass 4400 kg, and just...
A car of mass 2500 kg collides with a truck of mass 4400 kg, and just after the collision the car and truck slide along, stuck together, with no rotation. The car's velocity just before the collision was <31, 0, 0> m/s, and the truck's velocity just before the collision was <-13, 0, 24> m/s. b)what is the increase in internal energy of the car and truck (thermal energy and deformation)?