Question

A parallel plate capacitor with a plate area of 20.0 cm2 and plate separation of 8.00...

A parallel plate capacitor with a plate area of 20.0 cm2 and plate separation of 8.00 mm is connected to a constant potential difference of 5.00 V. A dielectric with a dielectric constant of 4.00 is inserted between the plates.

a) What is the energy stored in the capacitor?

b) The capacitor is disconnected from the battery and the dielectric is removed from the interior of the capacitor. What is the new energy of the capacitor now?

c) What does this imply in regards to work? Where does this work come from or went into?  

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 8.00 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 5.00 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part A- Find the energy U1 of the dielectric-filled capacitor. Part B- The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find...
A dielectric-filled parallel-plate capacitor has plate area A = 20.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 20.0 cm2 , plate separation d = 8.00 mm and dielectric constant k = 3.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Find the energy U1 of the dielectric-filled capacitor. Express your answer numerically in joules. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the...
A parallel plate capacitor of area A = 30 cm2 and separation d = 5 mm...
A parallel plate capacitor of area A = 30 cm2 and separation d = 5 mm is charged by a battery of 60-V If the air between the plates is replaced by a dielectric of k= 4, but the battery disconnected before the dielectric inserted, 1) Find the capacitance of the capacitor. 2) What is the charge on the capacitor? 3) What is the energy stored in the capacitor? please explain. Thank you
A dielectric-filled parallel-plate capacitor has plate area AAA = 20.0 cm2cm2 , plate separation ddd =...
A dielectric-filled parallel-plate capacitor has plate area AAA = 20.0 cm2cm2 , plate separation ddd = 8.00 mmmm and dielectric constant kkK = 4.00. The capacitor is connected to a battery that creates a constant voltage VVV = 15.0 VV . Throughout the problem, use ϵ0ϵ0epsilon_0 = 8.85×10−12 C2/N⋅m2C2/N⋅m2 . a. Find the energy .1U1U_1 of the dielectric-filled capacitor. b. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 7.00 mm and dielectric constant k = 5.00. The capacitor is connected to a battery that creates a constant voltage V = 10.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . a. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 6.00 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 5.00 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part (A) Find the energy U1 of the dielectric-filled capacitor. (Express your answer numerically in joules.) Part(B) The dielectric plate is now slowly pulled out of the capacitor, which remains...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d = 7.00 mm and dielectric constant k = 5.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part A Find the energy U1 of the dielectric-filled capacitor. Part B The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 8.00 mm and dielectric constant k = 2.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Find the energy U1 of the dielectric-filled capacitor. Express your answer numerically in joules. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the...
A dielectric-filled parallel-plate capacitor has plate area A = 10.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 10.0 cm2 , plate separation d = 10.0 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 12.5 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part A) Find the energy U1 of the dielectric-filled capacitor. Express your answer numerically in joules. Part B) The dielectric plate is now slowly pulled out of the capacitor, which...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d = 6.00 mm and dielectric constant k = 3.00. The capacitor is connected to a battery that creates a constant voltage V = 5.00 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part A Find the energy U1 of the dielectric-filled capacitor. Express your answer numerically in joules. Part B The dielectric plate is now slowly pulled out of the capacitor, which...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT