Question

Monochromatic light of wavelength λ1 is sent through two closely-spaced slits separated by a distance d1...

Monochromatic light of wavelength λ1 is sent through two closely-spaced slits separated by a distance d1 = 1.8 mm. A resulting interference pattern is shown on a screen L1 away. Another monochromatic light source, this one of wavelength λ2, is sent through a diffraction grating toward the same screen, resulting in a second interference pattern. The diffraction grating is a distance L2 from the screen and has 400 lines per mm etched onto it.

A) Assume that L1 = L2 = 4.8 m and that λ1 = λ2 = λ. Which interference pattern will have a greater angular separation between its m = 1 bright fringes? Explain.

B) If the interference pattern from the double slit produces 5 bright fringes/cm, what is the wavelength λ of the light?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Bichromatic light of wavelengths λ1=572λ1=572 nm and λ2=647λ2=647 nm is incident on a double-slit plate. The...
Bichromatic light of wavelengths λ1=572λ1=572 nm and λ2=647λ2=647 nm is incident on a double-slit plate. The separation between the slits dd and the width of each slit are not given. The distance between the viewing screen and the plate is L=1.0L=1.0m. The first interference maximum of the 572 nm-wavelength of light is observed at y1=4.4y1=4.4 mm. What is the slit spacing, dd? Using the far-field approximation, calculate the separation between the m=3m=3 interference maxima of λ1λ1 and λ2λ2. There is...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 8 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 23.5 mm...
A monochromatic light with wavelength 480.0 nm strikes a pair of narrow slits with spacing 0.100...
A monochromatic light with wavelength 480.0 nm strikes a pair of narrow slits with spacing 0.100 mm. The first dark fringe is formed on a screen at a vertical distance of 1.20 cm from the center of a screen placed in front of the slit. How far away is the screen placed What is the distance on the screen from the center of the interference pattern to the m = 3 bright fringe? What is the shortest distance from the...
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is...
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is 0.03mm wide. What is the width of the central bright fringe on the diffraction pattern formed on a screen placed at a distance of 2.00 m away from the slit? 2. Light of wavelength 500 nm is incident on a single slit of width 0.02 mm to produce a diffraction pattern with intensity 4.00×10^-4 W/m^2 at the center of a screen placed far away...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light of wavelength λ= 460 nm  falls on the slits from a distant source. The distance between adjacent bright fringes is 6.2 mm. A) Find the distance between the two slits B) Determine the distance to the 6th order dark fringe from the central fringe
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of...
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of 500 nm. An interference pattern is observed on a screen 1.20 m from the slits. (a) Draw the diagram of the double slits and determine how far apart will adjacent bright interference fringes on the screen? (b) What are the angles of the first and second order fringes with respect to the zeroth order fringe? (c) Determine the position of the first and second...
White light passes through sodium vapor and is then analyzed with a prism. The resulting spectrum...
White light passes through sodium vapor and is then analyzed with a prism. The resulting spectrum A) is continuous. B) consists of spectral lines. C) is continuous and contains absorption lines. D) none of the above. a) Light with a wavelength of 600 nm is incident on a single slit whose width is 0.01 mm. The screen is 80 cm from the slit. Calculate the distance between the first-order minimum and the centre. b) Monochromatic light with a frequency of...
In an interference-diffraction pattern produced by 2 identical slits, which are separated by a distance of...
In an interference-diffraction pattern produced by 2 identical slits, which are separated by a distance of 0.60 mm, 9 bright fringes are observed inside the central diffraction maximum. What is the width of each slit?
Parallel rays of monochromatic light with wavelength 587 nm illuminate two identical slits and produce an...
Parallel rays of monochromatic light with wavelength 587 nm illuminate two identical slits and produce an interference pattern on a screen that is 75.0 cm from the slits. The centers of the slits are 0.640 mm apart and the width of each slit is 0.434 mm. If the intensity at the center of the central maximum is 3.00×10−4 W/m2 , what is the intensity at a point on the screen that is 0.710 mm from the center of the central...
A light source shines light consisting of two wavelengths, λ1 = 540 nm (green) and λ2...
A light source shines light consisting of two wavelengths, λ1 = 540 nm (green) and λ2 = 450 nm (blue), on two slits separated by 0.170 mm. The two overlapping interference patterns, one from each wavelength, are observed on a screen 1.31 m from the slits. What is the minimum distance (in cm) from the center of the screen to a point where a bright fringe of the green light coincides with a bright fringe of the blue light? cm