Question

1A) A circuit consists of a 12.0 V battery, a 100 kΩ resistor, a 20.0 μF...

1A)

A circuit consists of a 12.0 V battery, a 100 kΩ resistor, a 20.0 μF capacitor in series with a switch which is initially in the open position. The capacitor is initially uncharged. Calculate the charge on the capacitor 6.00 seconds after the switch is closed. Calculate the current through the resistor 6.00 seconds after the switch is closed.

1B)

A 20 μF capacitor has previously charged up to contain a total charge of Q=100 μC on it. The capacitor is then discharged by connecting it directly across a 100−kΩ resistor. At what point in time after the resistor is connected will the capacitor have 13.5 μC of charge remaining on it?

Homework Answers

Answer #1

1A)

Given

V = 12.0 V

R = 100 x 103 ohm

C = 20.0 x 10-6 F

t = 6.00 s

Solution

Qmax = CV = 20.0 x 10-6 x 12.0

Qmax = 240 x 10-6 C

Imax = V/R = 12/100 x 103 = 1.2 x 10-4 A

Time constant

τ = RC = 100 x 103 x 20.0 x 10-6

τ = 2 s

Qt = Qmax [1-e-t/τ]

Q6 = 240 x 10-6 [1-e-6/2]

Q6 = 2.28 x 10-4 C

It = Imax e-t/τ

I6 = 1.2 x 10-4 x e-3

I6 = 5.97 x 10-6 A

1B)

Given

C= 20 x10-6 F

R = 100 x 103 ohm

Qo = 100 x 10-6 C

Q = 13.5 x 10-6 C

Solution

Qt  = Qo [e-t/τ]

13.5 x 10-6 = 100 x 10-6 [e-t/2]

0.135 = e-t/2

et/2 = 1/0.135 = 7.407

t/2 = ln(7.407)

t = 4.00 s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An uncharged 3.0-μF capacitor is connected in series with a 30-kΩ resistor, an ideal 6.7-V battery,...
An uncharged 3.0-μF capacitor is connected in series with a 30-kΩ resistor, an ideal 6.7-V battery, and an open switch. What is the voltage across the capacitor 21 ms after closing the switch? 15.2 V 6.70 V 12.0 V 1.39 V
A 20.0 μF capacitor initially charged to 30.0 μC is discharged through a 2.50 kΩ resistor....
A 20.0 μF capacitor initially charged to 30.0 μC is discharged through a 2.50 kΩ resistor. How long does it take to reduce the capacitor's charge to 15.0 μC ? Express your answer with the appropriate units.
An RC circuit consists of a resistor with a resistance 2 kOhms, a 120-V battery and...
An RC circuit consists of a resistor with a resistance 2 kOhms, a 120-V battery and two capacitors, C1 and C2, with capacitances of 20.0uF and 60uF, respectively all connected in series. Initially the capacitors are uncharged; and the switch is closed at t=0 seconds. A.)What is the total capacitance in the circuit? B.)What is the time constant of the circuit? C.)How much charge will be stored in each capacitor after a long time has elasped D.)Determine the total charges...
A 285-Ω resistor is in series with a 35.5 μF capacitor and a 27.0-V voltage source...
A 285-Ω resistor is in series with a 35.5 μF capacitor and a 27.0-V voltage source with the circuit switch open and the capacitor uncharged. (a) What is the time constant of this RC circuit? 10.1175 ms (b) Calculate the maximum charge the capacitor can accumulate. .000972 C (c) Calculate the charge on the capacitor 5.25 ms after the switch is closed. .0005785083113C Please check my answers. Thanks!
An RC circuit consists of a resistor of 4 MΩ in series with a 5μF capacitor...
An RC circuit consists of a resistor of 4 MΩ in series with a 5μF capacitor and a battery of Ɛ= 9 V and a switch. At t = 0 s, the switch is closed and the capacitor is allowed to charge. a) Calculate the charge on the capacitor plates after 5 seconds. b) Calculate the voltage across the capacitor and the resistor after 5 seconds. c) Calculate the current flowing through the resistor after 5 seconds. d) How long...
In a series RC circuit, a battery of 7.30 volts is connected to the resistor of...
In a series RC circuit, a battery of 7.30 volts is connected to the resistor of 467 ohms, the capacitor of 6.71 microfarads, and a switch. The capacitor is initially uncharged. The switch is closed at time t = 0. How long does it take for the capacitor to get fully charged? Answer to four decimal places.
A series RC circuit with C = 44 μF and R = 6.4 Ω has a...
A series RC circuit with C = 44 μF and R = 6.4 Ω has a 24 V source in it. With the capacitor initially uncharged, an open switch in the circuit is closed. a) After the switch has been closed for t = 3 τ, what is the charge on the capacitor?
An uncharged capacitor of 30 µF, a 35 ohm resistor, a battery and an open switch...
An uncharged capacitor of 30 µF, a 35 ohm resistor, a battery and an open switch are connected in series. This battery has a potential difference of 50 volts between its terminals before supplying current to the circuit. The cables connecting the battery and circuit elements have no remarkable resistance. At t = 0, the switch is closed suddenly. a) What is the largest current value passing through a resistance of 35 ohms and when does it reach this value?...
7) A circuit consists of a capacitor (capacitance of 1μF) and a resistor (resistance 1000 Ω)...
7) A circuit consists of a capacitor (capacitance of 1μF) and a resistor (resistance 1000 Ω) in series, with a battery supplying a potential difference of 12.0 V. At time t=0 a switch is closed to allow current to flow in the circuit for the first time. Remember that the potential difference supplied by the battery ε is not the same as the potential across the capacitor ΔV unless a lot of time has elapsed. Also an RC circuit is...
An initially uncharged 12 μF capacitor charged by a 12 V power supply (battery) connected in...
An initially uncharged 12 μF capacitor charged by a 12 V power supply (battery) connected in series with a 100 Ω resistor. i. What is the total energy stored in the capacitor when it reached the fully charged situation? ii. What is the total energy supplied by the power supply during this time? iii. Does the capacitor store the total energy supplied by the battery? Otherwise, explain how the energy supplied by the battery used in the circuit.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT