Question

prove that if you had a heat engine whose efficiency was bettr than the ideal value...

prove that if you had a heat engine whose efficiency was bettr than the ideal value (4.5), you could hook it up to an ordinary carnot refrigerator to make a refrigerator that requires no work input

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
prove that if you had a heat engine whose efficiency was better than the ideal value...
prove that if you had a heat engine whose efficiency was better than the ideal value of 4.5, you could hook it up to an ordinary carnot refrigerator to make a refrigerator that requires no work input?
Question 3) Which one of the following statements concerning the efficiency of a Carnot heat engine...
Question 3) Which one of the following statements concerning the efficiency of a Carnot heat engine is true? A) The efficiency of an irreversible engine is typically greater than that of a reversible engine operating under the same circumstances. B) The efficiency is dependent on whether an ideal or non-ideal gas is used. C) One hundred percent efficiency is possible if the engine can be operated in reverse. D) The efficiency is not dependent on the temperatures of the hot...
Chapter 16 Part 2: Question 16.3 An ideal Carnot engine takes 2000 J of heat from...
Chapter 16 Part 2: Question 16.3 An ideal Carnot engine takes 2000 J of heat from a reservoir at 500 K, does some work, and discards some heat to a reservoir at 350 K. Let’s see what happens if the Carnot engine described is run backward as a refrigerator.What is its performance coefficient? SOLUTION SET UP AND SOLVE We know that a refrigerator will act like an engine but with the signs for QH, QC, and Wreversed because the cycle...
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with...
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with keeping all other parameters unchanged: A. None of the answers. B. Decreases the heat added at high temperature. C. Increases the thermal efficiency of the cycle. D. Decreases the thermal efficiency of the cycle. 1 points    QUESTION 2 The maximum thermal efficiency of the Rankine cycle power plant is achieved when: A. it works on Carnot heat engine cycle. B. the pump work...
At a steam power plant, steam engines work in pairs, the heat output of the first...
At a steam power plant, steam engines work in pairs, the heat output of the first one being the approximate heat input of the second. The operating temperatures of the first are 770 ∘C and 430 ∘C, and of the second 405 ∘C and 290 ∘C. A) If the heat of combustion of coal is 2.8×107J/kg2.8×107J/kg, at what rate must coal be burned if the plant is to put out 950 MWMW of power? Assume the efficiency of the engines...
At a steam power plant, steam engines work in pairs, the heat output of the first...
At a steam power plant, steam engines work in pairs, the heat output of the first one being the approximate heat input of the second. The operating temperatures of the first are 710 ∘C and 440 ∘C, and of the second 415 ∘C and 250 ∘C. A. If the heat of combustion of coal is 2.8×107J/kg, at what rate must coal be burned if the plant is to put out 960 MW of power? Assume the efficiency of the engines...
You have 1.3 moles of a fictitious ideal gas whose molar specific heat values are Cv...
You have 1.3 moles of a fictitious ideal gas whose molar specific heat values are Cv = 13.43 J/(mol·K) and Cp = 21.74 J/(mol·K). The gas is heated from T = 26.5 °C to T = 120.7 °C at a constant volume of 0.0306 m3 1. How much work is done by the gas? 2. How much thermal energy (heat) flows into the gas? 3. What is the change in the internal energy of the gas?
1. You will learn much about heat engine cycles in thermo II (if you take it),...
1. You will learn much about heat engine cycles in thermo II (if you take it), but you already have the basic skills needed to perform a rst law analysis of a simple vapor power cycle. This cycle has four basic components: steam turbine, condenser, liquid pump, and boiler, and four as- sociated processes. A speci c case of this cycle has water, in the form of a saturated vapor at 40 kPa, exiting from the turbine and entering the...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of fluid. At the inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (i) Find the velocity at the nozzle exit. (ii) If the inlet area is 0.1 m2 and specific volume...
This question asks you to analyze how the ideal conditions that influence the motives and decision-making...
This question asks you to analyze how the ideal conditions that influence the motives and decision-making of firms in Pure Competition cause differences in the efficiency outcomes and total profit levels that occur in the short run and the long run. Make a distinction between accounting profit and economic profit. Then explain why a purely competitive firm who earns a Zero Total Economic Profit is actually earning a normal profit, as viewed by economists. In the short run, explain how...