Question

An electron and an antielectron (positron) each have a rest energy of 0.511 MeV , or...

An electron and an antielectron (positron) each have a rest energy of 0.511 MeV , or approximately 8.2×10-14 J . When an electron and a positron are both stationary and located next to each other during an annihilation process, their mass energy converts to electromagnetic energy released as photons, electromagnetic particles that have momentum but no mass and that travel at the speed of light. What is the minimum number of photons that could be released, and how much energy would each photon posses?

A. one photon with energy 0.511 MeV

B. one photon with energy 1.022 MeV

C. two photons, each with energy 0.511 MeV

D. two photons of any energy, as long as their total energy equals 1.022 MeV

Homework Answers

Answer #1

Correct answer: C. Two photons, each with energy 0.511MeV

Minimum 2 photons will be released. This is because, initial momentum of electron and positron is zero. Hence final momentum should also be zero. If only one photon is released , final momentum cannot be zero. So two photons with equal and opposite momentum will be released such that the final momentum is also zero. So if the magnitude of the momentum of both photons is the same, their energy is also the same.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a head-on collision of an electron of kinetic energy of 2.044 MeV with a positron...
In a head-on collision of an electron of kinetic energy of 2.044 MeV with a positron at rest, the two particles are replaced by two photons of equal energy. If each photon is traveling at an angles θ with respect to the electron’s direction of motion, What is the energy E, momentum p (you can leave the answer in terms of c) and angle of θ of each photon? (For electron and positron mc2 = 0.511 MeV)
An electron and a positron, each with a kinetic energy of 2.50 MeV, annihilate, creating two...
An electron and a positron, each with a kinetic energy of 2.50 MeV, annihilate, creating two photons that travel away in opposite directions.What is the frequency of each photon?
In a process called "positron-electron annihilation," a positron collides with an electron, and both particles are...
In a process called "positron-electron annihilation," a positron collides with an electron, and both particles are destroyed. During this process, the total mass of both particles is completely converted to energy in the form of gamma radiation. Determine the total energy given off when one positron collides with one electron resulting in annihilation. (Note: mass of positron = mass of electron = 0.000549 amu)
An electron and a positron are moving toward each other with equal speeds of 3 x...
An electron and a positron are moving toward each other with equal speeds of 3 x 106 m/s. The two particles annihilate each other and produce two photons of equal energy. (a) Do you need to use relativity for this problem? Support your answer numerically, and comment intelligently. (b) What were the deBroglie wavelengths of the electron and positron? (c) Find the energy of each photon. (d) Find the momentum of each photon. (e) Find the wavelength of each photon.
An electron has a kinetic energy K of 1 MeV and is incident on a proton...
An electron has a kinetic energy K of 1 MeV and is incident on a proton at rest in the laboratory. Calculate the speed of the CMS frame (The centre of mass, or centre of momentum, (CMS) frame is that in which the sum of the momenta (i.e., the total momentum) of all particles is zero) moving relative to the laboratory. (a) Express the initial energies Ee, Ep and initial momenta pe, pp of the electron and proton respectively (with...
2. A positron is the anti-particle of an electron. It has exactly the same mass as...
2. A positron is the anti-particle of an electron. It has exactly the same mass as an electron but the opposite electric charge. Prove, using conservation of energy and momentum that it is impossible for an electron and positron to be formed from the "decay" of a single (high-energy) photon. (Note: this process can occur in the presence of other particles).
Convert each of the following MeV/c2 masses into kilograms: a) The mass of an electron or...
Convert each of the following MeV/c2 masses into kilograms: a) The mass of an electron or of a positron is 0.511 MeV/c2 b) The mass of a proton or of a antiprton is 938.3 MeV/c2 c) The mass of a positive pion or of a negative pion (antipion) is 139.6 MeV/c2
What is the Kinetic Energy of an electron traveling at 0.8c. Its rest mass energy is...
What is the Kinetic Energy of an electron traveling at 0.8c. Its rest mass energy is 0.511 Mev. (b) What is the total energy? (c) What is the momentum ? Mass = 9.11 x 10^-31
The Large Electron-Positron Collider (LEP) was an accelerator at CERN, the International particle physics laboratory in...
The Large Electron-Positron Collider (LEP) was an accelerator at CERN, the International particle physics laboratory in Europe. As its name implies, at LEP electrons (e- with mass of 0.51 MeV/c2) were collided close to head-on with their anti-particle, positrons (e+ with the same mass). Each of these particles was accelerated to an energy of 104.5 GeV by the time they collided. What is the Lorentz factor $\gamma$ of an electron at this energy? How fast as a fraction of the...
1)A magnesium surface has a work function of 2.65 eV. Electromagnetic waves with a wavelength of...
1)A magnesium surface has a work function of 2.65 eV. Electromagnetic waves with a wavelength of 280 nm strike the surface and eject electrons. Find the maximum kinetic energy of the ejected electrons. Express your answer in electron volts. Ans in  eV 2)What is the energy of each of the two photons produced in an electron-positron annihilation? Use the following Joules-to-electron-Volts conversion 1eV = 1.602 × 10-19 J. The rest mass of an electron is 9.11×10^-31 kg. Ans in MeV