Question

A crate of 31.6-kg tools rests on a horizontal floor. You exert a gradually increasing horizontal push on it and observe that the crate just begins to move when your force exceeds 309 N . After that you must reduce your push to 248 N to keep it moving at a steady 22.0 cm/s

What is the coefficient of static friction between the crate and the floor?

What is the coefficient of kinetic friction between the crate and the floor?

What push must you exert to give it an acceleration of 1.07 m/s2 ?

Suppose you were performing the same experiment on this crate but were doing it on the moon instead, where the acceleration due to gravity is 1.62 m/s2. What magnitude push would cause it to move?

What would its acceleration be if you maintained the push in part C?

Answer #1

A crate of 41.3-kg tools rests on a horizontal floor. You exert
a gradually increasing horizontal push on it and observe that the
crate just begins to move when your force exceeds 337 N . After
that you must reduce your push to 202 N to keep it moving at a
steady 20.0 cm/s .
Part A.) What is the coefficient of static friction between the
crate and the floor? (static fraction=???)
Part B.) What is the coefficient of kinetic...

A 35 kg crate is at rest on the floor. A man attempts to push it
across the floor by applying a 100 N force horizontally.
(a) Take the coefficient of static friction between the crate
and the floor to be 0.37 and show that the crate does not move.
(b) A second man helps by pulling up on the crate. Calculate the
minimum vertical force he must apply so that the crate starts to
move across the floor.
(c)...

Suppose you have to move a heavy crate of
weight 875
N by sliding it along a horizontal concrete
floor. You push the crate to the right with a horizontal force of
magnitude 300
N, but friction prevents the crate from
sliding. What is the
magnitude
Fp of
the minimum force you need to exert on the crate to make it start
sliding along the floor? Let the coefficient of static
friction ?s between the crate and the floor be...

A force F is required to push a crate along a rough
horizontal floor at a constant speed V with friction
present. What force is needed to push the crate along the same
floor at a constant speed 2V if friction is the same as
before?
1) A force that gradually increases from F to
2F is needed.
2) No force is needed since the crate has no acceleration.
3) A constant force 2F is needed.
4) A constant force...

A large crate with mass m rests on a horizontal floor.
The static and kinetic coefficients of friction between the crate
and the floor are μs and μk, respectively. A
woman pushes downward on the crate at an angle θ below the
horizontal with a force F⃗ .
What is the magnitude of the force vector
F⃗ required to keep the crate moving at
constant velocity?
If μs is greater than some critical value, the woman
cannot start the crate moving...

A 1,200-N crate is being pushed across a level floor at a
constant speed by a force
F of 370 N at an angle of 20.0° below the horizontal, as shown
in the figure a below.
(a) What is the coefficient of kinetic friction between the
crate and the floor? (Enter your answer to at least three decimal
places.)
(b) If the 370-N force is instead pulling the block at an
angle of 20.0° above the horizontal, as shown...

A 110-kg crate, starting from rest, is pulled across a floor
with a constant horizontal force of 380 N . For the first 14 m the
floor is frictionless, and for the next 14 m the coefficient of
friction is 0.35.
What is the final speed of the crate?

A 91 kg crate, starting from rest, is pulled across a floor with
a constant horizontal force of 400 N . For the first 15 m the floor
is frictionless, and for the next 15 m the coefficient of friction
is 0.20.
What is the final speed of the crate?
Express your answer using two significant figures.

A 52.1-kg crate rests on a level floor at a shipping dock. The
coefficients of static and kinetic friction are 0.649 and 0.386,
respectively. What horizontal pushing force is required to (a) just
start the crate moving and (b) slide the crate across the dock at a
constant speed?

A 69 kg crate is dragged across a floor by pulling on a rope
attached to the crate and inclined 12° above the horizontal.
(a) If the coefficient of static friction is 0.46,
what minimum force magnitude is required from the rope to start the
crate moving? (b) If μk =
0.36, what is the magnitude of the initial acceleration (m/s^2) of
the crate?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 47 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago

asked 4 hours ago