Question

In the figure here, a stationary block explodes into two pieces L and R that slide...

In the figure here, a stationary block explodes into two pieces L and R that slide across a frictionless floor and then into regions with friction, where they stop. Piece L, with a mass of 2.2 kg, encounters a coefficient of kinetic friction μL = 0.52 and slides to a stop in distance dL = 0.41 m. Piece R encounters a coefficient of kinetic friction μR = 0.33 and slides to a stop in distance dR = 0.44 m. What was the mass of the block?

Homework Answers

Answer #1

Let the initial velocity of L and R be uL and uR respectively, then by conservation of momentum,

mLuL = mRuR

For L:

acceleration, a= -Lg; final velocity, vL=0; sL=0.41 m

using, vL2 - uL2 = 2as

uL= 2.0452 m/s

For R:

acceleration, a= -Rg; final velocity, vR=0; sR=0.44 m

using, vR2 - uR2 = 2as

uR= 1.687 m/s

putting the values of uL and uR and mLin the first equation,

2.2*2.0452 - mR*1.687 = 0 {negative sign indicates that the velocities are in the opposite direction}

mR= 2.6671 kg

mass of the block, m= 2.2+2.66

m= 4.86 kg

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the figure here, a stationary block explodes into two pieces L and R that slide...
In the figure here, a stationary block explodes into two pieces L and R that slide across a frictionless floor and then into regions with friction, where they stop. Piece L, with a mass of 3.8 kg, encounters a coefficient of kinetic friction μL = 0.56 and slides to a stop in distance dL = 0.48 m. Piece R encounters a coefficient of kinetic friction μR = 0.56 and slides to a stop in distance dR = 0.31 m. What...
A stationary block of mass 5 kg explodes into two pieces L and R that slide...
A stationary block of mass 5 kg explodes into two pieces L and R that slide across a frictionless floor. The left piece slides across the region with friction and stops, the right piece compresses a spring. Momentum is conserved during the explosion. Piece L has a mass of 2 kg and encounters a flat surface with coefficient of kinetic friction µL = 0.4 and slides to a stop in distance dL = 0.5 m. Piece R slides across the...
Block 1, with mass m1 and speed 5.4 m/s, slides along an x axis on a...
Block 1, with mass m1 and speed 5.4 m/s, slides along an x axis on a frictionless floor and then undergoes a one-dimensional elastic collision with stationary block 2, with mass m2 = 0.65m1. The two blocks then slide into a region where the coefficient of kinetic friction is 0.56; there they stop. How far into that region do (a) block 1 and (b) block 2 slide?
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height...
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height h and then collides with stationary block 2, which has mass m2 = 3m1 . The collision is an elastic one. After the collision, block 2 slides into a friction-filled region where the coefficient of kinetic friction is 0.5 and comes to a stop through a distance d = 10 m in that region. What is the height h?
A bullet of mass m is fired into a block of mass M that is at...
A bullet of mass m is fired into a block of mass M that is at rest. The block, with the bullet embedded, slides distance d across a horizontal surface. The coefficient of kinetic friction is μk​ A) What is the speed of a 12 g bullet that, when fired into a 9.0 kg stationary wood block, causes the block to slide 5.6 cm across a wood table? Assume that μk=0.20 Express your answer to two significant figures and include...
A block of mass m is initially held at rest at point P on an incline...
A block of mass m is initially held at rest at point P on an incline that makes an angle q with respect to horizontal. The coefficient of kinetic friction between the block and the incline is mk. After the block slides down the incline from point P, it starts to slide without friction up a vertical circular track of radius R. When it reaches the top of the circle, the normal force (downward) by the track to the block...
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp...
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp that makes an angle of 36.2 ^\circ ∘ below the horizontal. After it slides without friction down the entire 2.89 m length of the ramp, it begins to slide horizontally along a rough concrete surface with a coefficient of kinetic friction of \mu_kμ k = 0.503 until it slows to a complete stop. How far does the block slide horizontally along the concrete before...
Th figure below shows a mass m=1.0 kg which is initially moving with speed v=6.8 m/s...
Th figure below shows a mass m=1.0 kg which is initially moving with speed v=6.8 m/s at the top of a frictionless hill of height h=4.4 m. It slides down the hill until it encounters a flat section with coefficient of kinetic friction µk=0.8. Find the distance D the object travels before coming to a stop.
A.Your mass m=11 kg block slides down a frictionless ramp having angle theta=0.51 radians to the...
A.Your mass m=11 kg block slides down a frictionless ramp having angle theta=0.51 radians to the horizontal. After sliding down the ramp a distance L=16 m the block encounters a spring of spring constant k=551 N/m. The spring is parallel to the ramp. Use g=9.74 m/s/s for the acceleration of gravity. Calculate the maximum compression of the spring, in meters. Include labeled diagrams showing the initial and final configurations, and a discussion of the solution method based on energy conservation....
Two blocks slide on a collision course across a frictionless surface, as in the figure. The...
Two blocks slide on a collision course across a frictionless surface, as in the figure. The resulting collision is inelastic. The first block has mass ,M = 1.40 kg and is initially sliding due north at a speed of Vi = 9.15 m/s. The second block has mass ,m = 7.20 ✕ 10−2 kg and is initially sliding at a speed of  vi = 11.5 m/s directed at an angle θ = 27.5° south of east. Immediately after the inelastic collision,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT