Question

Transverse waves traveling along a string have the following properties. Amplitude of the wave = 2.30...

Transverse waves traveling along a string have the following properties.

Amplitude of the wave = 2.30 mm

Wavelength of the wave = 0.128 m

Speed of the wave = 328 m/s

a) Determine the time for a particle of the string to move through a total distance of 1.50 km. in s

b) If the string is held under a tension of 982 N, determine its linear density. in g/m

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The equation of a transverse wave traveling along a very long string is y = 4.60...
The equation of a transverse wave traveling along a very long string is y = 4.60 sin(0.0684πx+ 2.07πt), where x and y are expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 8.64 cm when t = 0.375 s?
1. A wave train is traveling along a string. Seven waves pass by a point in...
1. A wave train is traveling along a string. Seven waves pass by a point in 3.75 s. The distance from the top of a crest to the bottom of an adjacent trough is 0.462 cm. Find: a) the speed of the waves. b) the tension in the string if it has a length of 1.68 m and a mass of 3.86 g. 2. Suppose that the string in problem #1 is attached to a second string whose linear density...
A traveling wave on a string oscillates with an amplitude of 0.080m and a frequency of...
A traveling wave on a string oscillates with an amplitude of 0.080m and a frequency of 2.5Hz. The speed of the waves on the string is 10 m/s. At t=0, the end from which the oscillations originate has a vertical displacement of 0m. a) Find the angular frequency, period, wavelength, and wave number. b) Write a wave function describing the wave. c) The linear mass density μ of the string is 0.300kg/m, and tension in the spring is maintained at...
the equation of a transverse wave traveling in a string is given by y=a sin(k x??t)....
the equation of a transverse wave traveling in a string is given by y=a sin(k x??t). the tension in the string is 20.0 n, a = 2 mm, k = 30 rad/m, ? = 850 rad/s. what is the wave speed? what is the linear density of the string?
A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is...
A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is 0.08330.0833 m, its frequency is 4.754.75 Hz, and its wavelength is 1.771.77 m. (a) What is the shortest transverse distance between a maximum and a minimum of the wave? shortest transverse distance: mm (b) How much time is required for 57.357.3 cycles of the wave to pass a stationary observer? time to pass a stationary observer: ss (c) Viewing the whole wave at any...
A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is...
A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is 0.0901 m, its frequency is 2.27 Hz, and its wavelength is 1.05 m. (a) What is the shortest transverse distance between a maximum and a minimum of the wave? shortest transverse distance: m (b) How much time is required for 57.9 cycles of the wave to pass a stationary observer? time to pass a stationary observer: s (c) Viewing the whole wave at any...
A transverse wave is traveling on a string. The displacement y of a particle from its...
A transverse wave is traveling on a string. The displacement y of a particle from its equilibrium position is given by y = (0.021 m) sin(25t - 2.0x). Note that the phase angle 25t - 2.0x is in radians, t is in seconds, and x is in meters. The linear density of the string is 2.3 × 10-2 kg/m. What is the tension in the string?
A transverse wave is traveling on a string. The displacement y of a particle from its...
A transverse wave is traveling on a string. The displacement y of a particle from its equilibrium position is given by y = (0.021 m) sin(25t - 2.0x). Note that the phase angle 25t - 2.0x is in radians, t is in seconds, and x is in meters. The linear density of the string is 2.0 × 10-2 kg/m. What is the tension in the string?
A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is...
A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is 0.0867 m, its frequency is 3.41 Hz, and its wavelength is 1.69 m. What is the shortest transverse distance ? between a maximum and a minimum of the wave? How much time Δ? is required for 61.3 cycles of the wave to pass a stationary observer? Viewing the whole wave at any instant, how many cycles ? are there in a 32.7 m length...
A sinusoidal transverse wave travels along a long stretched string. The amplitude of this wave is...
A sinusoidal transverse wave travels along a long stretched string. The amplitude of this wave is 0.0817 m, its frequency is 3.61 Hz, and its wavelength is 1.11 m. (a) What is the transverse distance between a maximum and a minimum of the wave? (b) How much time is required for 56.9 cycles of the wave to pass a stationary observer? (c) Viewing the whole wave at any instant, how many cycles are there in a 34.1-m length of string?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT