Question

(8c23p69) A thin, metallic, spherical shell of radius a = 7.0 cm has a charge qa...

(8c23p69) A thin, metallic, spherical shell of radius a = 7.0 cm has a charge qa = 5.00×10-6 C. Concentric with it is another thin, metallic, spherical shell of radius b = 18.90 cm and charge qb = 5.00×10-6 C.

Find the electric field at radial points r where r = 0.0 cm.

Find the electric field at radial points r where r = 13.0 cm.

Find the electric field at radial points r where r = 28.4 cm.

Discuss the criterion one would use to determine how the charges are distributed on the inner and outer surface of the shells. What is the charge on the outer surface of the outer shell?

Homework Answers

Answer #1

Read this Solution is at bottom

For Conductor

Charge always resides on the outer surface of the conductor.
if there is a cavity inside the conductor having no charge then the charge will always reside only
on the
outer surface of the conductor.

Now come to Question

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin-walled metal spherical shell of radius a = 8 m has a charge qa =...
A thin-walled metal spherical shell of radius a = 8 m has a charge qa = 23 C. Concentric with it is a thin-walled metal spherical shell of radius b = 7a and charge qb = 27 C. Find the electric field at points a distance r from the common center, where (a) r = 2.4 m, (b) r = 16 m, and (c) r = 84.0 m.
A thin-walled metal spherical shell of radius a = 36 m has a charge qa =...
A thin-walled metal spherical shell of radius a = 36 m has a charge qa = 11 C. Concentric with it is a thin-walled metal spherical shell of radius b = 5a and charge qb = 33 C. Find the electric field at points a distance r from the common center, where (a) r = 10.8 m, (b) r = 72 m, and (c) r = 270.0 m.
A thin spherical shell of radius R1 = 3.00 cm is concentric with another larger thin...
A thin spherical shell of radius R1 = 3.00 cm is concentric with another larger thin spherical shell of radius R2 = 5.00 cm. Both shells are made of insulating material. The smallest shell has a charge q1 = +6.00 nC distributed evenly on its surface, and the largest one has a charge q2 = -9.00 nC evenly distributed on its surface ficie. Consider the electric potential equal to zero at an in- finite of both shells. a) What is...
A thin spherical shell with radius R1 = 4.00cm is concentric with a larger thin spherical...
A thin spherical shell with radius R1 = 4.00cm is concentric with a larger thin spherical shell with radius 7.00cm . Both shells are made of insulating material. The smaller shell has charge q1=+6.00nC distributed uniformly over its surface, and the larger shell has charge q2=?9.00nC distributed uniformly over its surface. Take the electric potential to be zero at an infinite distance from both shells. Part A What is the electric potential due to the two shells at the following...
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -1q and the outer shell has a total charge of +3q. Select True or False for the following statements. True False The radial component of the electric field in the region r > dis given by +2q/(4πε0r2). True False The total charge on...
A thin spherical shell has a radius a and charge +Q that is distributed uniformly overr...
A thin spherical shell has a radius a and charge +Q that is distributed uniformly overr it. There is also a second spherical shell of radius b that is concentric with the first shell and has charge +Q2 uniformly distributed over it. b> a. Find the magnitude and direction of electric field in the regions (a) R<a (b)a<R<b (c)R>b (d) electric potential for the region R>b (e) electric potential for the region a<R<b (f)electric potential for the region R<a
Two long, charged, thin-walled, concentric cylindrical shells have radii of 1.22 and 11.47 cm. The charge...
Two long, charged, thin-walled, concentric cylindrical shells have radii of 1.22 and 11.47 cm. The charge per unit length is 3.55 × 10-6 C/m on the inner shell and 8.56 × 10-6 C/m on the outer shell. What is the magnitude electric field of E at a radial distance r = 6.39 cm??
A conducting spherical shell of inner radius and outer radius has a charge Q on it....
A conducting spherical shell of inner radius and outer radius has a charge Q on it. The flux through a concentric spherical surface of radius is . An additional charge, also Q, is then added to the sphere. What is the change in flux through a concentric spherical surface of radius when the additional charge is placed on the conducting shell?
A thin cylindrical shell of radius R1=5.0cmR1=5.0cm is surrounded by a second cylindrical shell of radius...
A thin cylindrical shell of radius R1=5.0cmR1=5.0cm is surrounded by a second cylindrical shell of radius R2=8.0cmR2=8.0cm, as in the figure (Figure 1). Both cylinders are 9.0 mm long and the inner one carries a total charge Q1=−0.71μCQ1=−0.71μC and the outer one Q2=+1.56μCQ2=+1.56μC. A) For points far from the ends of the cylinders, determine the magnitude of the electric field at a radial distance r from the central axis of 5.9 cm.   B) For points far from the ends of...
A thin cylindrical shell of radius R1=5.9cm is surrounded by a second cylindrical shell of radius...
A thin cylindrical shell of radius R1=5.9cm is surrounded by a second cylindrical shell of radius R2=8.0cm, as in the figure (Figure 1). Both cylinders are 10 m long and the inner one carries a total charge Q1=−0.92μC and the outer one Q2=+1.55μC. 1. For points far from the ends of the cylinders, determine the electric field at a radial distance r from the central axis of 2.8 cm . 2. For points far from the ends of the cylinders,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT