Question

The figure below shows an electron at the origin that is released with initial speed v0...

The figure below shows an electron at the origin that is released with initial speed v0 = 5.9 ✕ 106 m/s at an angle θ0 = 45° between the plates of a parallel plate capacitor of plate separation D = 2.0 mm. If the potential difference between the plates is ΔV = 105 V, calculate the closest proximity, d, of the electron to the bottom plate (in mm).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. What potential difference is needed to accelerate a He+ ion (charge +e, mass 4u) from...
1. What potential difference is needed to accelerate a He+ ion (charge +e, mass 4u) from rest to a speed of 1.1×106 m/s ? 2. Two 2.00 cm × 2.00 cm plates that form a parallel-plate capacitor are charged to ± 0.708 nC . a) What is the electric field strength inside the capacitor if the spacing between the plates is 1.30 mm ? b)What is potential difference across the capacitor if the spacing between the plates is 1.30 mm...
In the figure, an electron accelerated from rest through potential difference V1=1.39 kV enters the gap...
In the figure, an electron accelerated from rest through potential difference V1=1.39 kV enters the gap between two parallel plates having separation d = 22.1 mm and potential difference V2= 98.7 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?
QUESTION 1: A +1.80 μC point charge is sitting at the origin. A: What is the...
QUESTION 1: A +1.80 μC point charge is sitting at the origin. A: What is the radial distance between the 500 V equipotential surface and the 1000 V surface? Express your answer in meters to three significant figures. B: What is the distance between the 1000 V surface and the 1500 V surface? Express your answer in meters to three significant figures. C: Explain why the answers to Part A and Part B are not the same. QUESTION 2: Here...
In the figure a charged particle (either an electron or a proton) is moving rightward between...
In the figure a charged particle (either an electron or a proton) is moving rightward between two parallel charged plates separated by distance d = 9.30 mm. The plate potentials are V1 = –63.0 V and V2 = –46.0 V. The particle is slowing from an initial speed of 85.0 km/s at the left plate. (a) Is the particle an electron or a proton? (b) What is its speed just as it reaches plate 2?
In the figure, a uniform, upward-pointing electric field E of magnitude 3.50×103 N/C has been set...
In the figure, a uniform, upward-pointing electric field E of magnitude 3.50×103 N/C has been set up between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have length L = 4 cm and separation d = 2.00 cm. Electrons are shot between the plates from the left edge of the lower plate. The first electron has the initial velocity v0, which makes an angle θ=45° with the lower plate and has a...
In the figure, a uniform, upward-pointing electric field E of magnitude 2.50×103 N/C has been set...
In the figure, a uniform, upward-pointing electric field E of magnitude 2.50×103 N/C has been set up between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have length L = 4 cm and separation d = 2.00 cm. Electrons are shot between the plates from the left edge of the lower plate. The first electron has the initial velocity v0, which makes an angle θ=45° with the lower plate and has a...
The figure below shows an electron passing between two charged metal plates that create an 85...
The figure below shows an electron passing between two charged metal plates that create an 85 N/C vertical electric field perpendicular to the electron’s original horizontal velocity. (These can be used to change the electron’s direction, such as in an oscilloscope.) The initial speed of the electron is 2.60×106 m/s, and the horizontal distance it travels in the uniform field is 4.30 cm. What is its vertical deflection? What is the vertical component of its final velocity? At what angle...
1. Find the capacitance of a parallel plate capacitor having plates of area 3 m2 that...
1. Find the capacitance of a parallel plate capacitor having plates of area 3 m2 that are separated by 0.08 mm of Teflon. Give answer in terms of 10-7 F. 2. What is the average power output of a heart defibrillator that dissipates 472 J of energy in 7 ms? Give answer in terms of 104 W. 3. What is the strength of the electric field between two parallel conducting plates separated by 1 cm and having a potential difference...
16.3 Capacitance 57.     MC A capacitor is first connected to a 6.0-V battery and then disconnected and...
16.3 Capacitance 57.     MC A capacitor is first connected to a 6.0-V battery and then disconnected and connected to a 12.0-V battery. How does its capacitance change: (a) It increases, (b) it decreases, or (c) it stays the same?   58.     MC A capacitor is first connected to a 6.0-V battery and then disconnected and connected to a 12.0-V battery. How does the charge on one of its plates change: (a) It increases, (b) it decreases, or (c) it stays the same?   59.     MC...
IP A parallel-plate capacitor has plates with an area of 1.3×10−2 m2 and a separation of...
IP A parallel-plate capacitor has plates with an area of 1.3×10−2 m2 and a separation of 0.82 mm . The space between the plates is filled with a dielectric whose dielectric constant is 2.0. Part A What is the potential difference between the plates when the charge on the capacitor plates is 4.2 μC ? Express your answer using two significant figures. V = V Previous AnswersRequest Answer Incorrect; Try Again; 4 attempts remaining Part B Will your answer to...