Question

consider a damped pendulum where the damping force is given by F =-kv where k is...

consider a damped pendulum where the damping force is given by F =-kv where k is the damping coefficient v is the velocity of the pendulum and F is the damping force applied to the pendulum . dertemine an expression for the period of the pendulum for its motion about the equilibrum position as function of the damping factor k.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The motion of a spring that is subject to a frictional force or a damping force...
The motion of a spring that is subject to a frictional force or a damping force (such as a shock absorber on a car) is often modeled by the product of an exponential function and a sine or cosine function. Suppose the equation of motion of a point on such a spring is s(t)=7e−1.2tsin(2πt)s(t)=7e−1.2tsin⁡(2πt) where ss is measured in centimeters and tt is measured in seconds. Find the velocity of the point after tt seconds. v(t)v(t) = Graph both the...
consider a simple pendulum in simple harmonic motion () is placed on the moon, where the...
consider a simple pendulum in simple harmonic motion () is placed on the moon, where the gravitional acceleration is 1.63 m/sec2, the increased period is T = 4.59 sec Determine: a. suppose that the pendulum has friction where the amplitude became 0.100 of the original amplitude after 0.001 hour. calculate the damping factor. b. calculate the period of the pendulum with friction.  
Consider an electromagnetic wave travelling in vacuum, where the electric field is given by: ?⃗ (?...
Consider an electromagnetic wave travelling in vacuum, where the electric field is given by: ?⃗ (? ,?)=40(?/?) sin[(8×106 ???/?) (?+??)+1.57 ???]?̂ a) Compute the: i. frequency ii. wavelength iii. period iv. amplitude v. phase velocity vi. direction of motion b) Write the corresponding expression for the magnetic field of this travelling wave (don’t forget to include the proper units). c) Plot this waveform as a function of x at t=0.
particle of mass m moves under a conservative force where the potential energy function is given...
particle of mass m moves under a conservative force where the potential energy function is given by V = (cx) / (x2 + a2 ), and where c and a are positive constants. Find the position of stable equilibrium and the period of small oscillations about it.
A mass of 1kg stretches a spring by 32cm. The damping constant is c=0. Exterbal vibrations...
A mass of 1kg stretches a spring by 32cm. The damping constant is c=0. Exterbal vibrations create a force of F(t)= 4 sin 3t Netwons, setting the spring in motion from its equilibrium position with zero velocity. What is the coefficient of sin 3t of the steady-state solution? Use g=9.8 m/s^2. Express your answe is two decimal places.
An object falls from rest. Its position at time t is given by s(t) = 1/2...
An object falls from rest. Its position at time t is given by s(t) = 1/2 gt^2. We consider that it falls for T seconds. (a) Write its velocity v as a function of time t and then write the velocity as a function of the position s. (b) Notice that v(T) denotes the nal velocity of the object. Write the average velocity v over the object during its fall, rst averaging over time t, and then averaging over position...
Consider a damped forced mass-spring system with m = 1, γ = 2, and k =...
Consider a damped forced mass-spring system with m = 1, γ = 2, and k = 26, under the influence of an external force F(t) = 82 cos(4t). a) (8 points) Find the position u(t) of the mass at any time t, if u(0) = 6 and u 0 (0) = 0. b) (4 points) Find the transient solution uc(t) and the steady state solution U(t). How would you characterize these two solutions in terms of their behavior in time?...
A particle of mass m moves under a force F = −cx^3 where c is a...
A particle of mass m moves under a force F = −cx^3 where c is a positive constant. Find the potential energy function. If the particle starts from rest at x = −a, what is its velocity when it reaches x = 0? Where in the subsequent motion does it instantaneously come to rest?
Consider the driven damped harmonic oscillator m(d^2x/dt^2)+b(dx/dt)+kx = F(t) with driving force F(t) = FoSin(wt). Consider...
Consider the driven damped harmonic oscillator m(d^2x/dt^2)+b(dx/dt)+kx = F(t) with driving force F(t) = FoSin(wt). Consider the overdamped case (b/2m)^2 < k/m a. Find the steady state solution. b. Find the solution with initial conditions x(0)=0, x'(0)=0. c. Use a plotting program to plot your solution for m=1, k=0.1, b=1, Fo=0.25, and w=0.5.
A force F= -F0 e(-x/λ ) (where F0 and λ are positive constants) acts on a...
A force F= -F0 e(-x/λ ) (where F0 and λ are positive constants) acts on a particle of mass m that is initially at x = x0 and moving with velocity v0 (> 0). Show that the velocity of the particle is given by, v(x) = ± ( v02 + (2F0λ/m)(e-x/λ - 1) ) 1/2 , where the upper (lower) sign corresponds to the motion in the positive (negative) x direction. Consider first the upper sign. For simplicity, define ve...