Question

Consider a square quadrupole consisting of two adjacent dipoles oppositely oriented and placed side by side...

Consider a square quadrupole consisting of two adjacent dipoles oppositely oriented and placed side by side to form a square. If the side length is L, find the electric field at a large distance r along the diagonal containing the two positive charges. Be careful to take into account all quantities that are second order L/r.

Homework Answers

Answer #1

The system can be considered as two dipoles of dipole moments P same in magnitude but opposite in direction separated by a distance L and the electric field is calculated at a distance r from them. As r>>L so we could use this approximation. Now the co-ordinates are taken as given in the diagram.

The potential at a point r from a system of two dipoles is given by

here and      where   is the dipole moment and q is the charge.

So

andd electric field is given by

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a square of side r = 4.60 cm with two q = +9.00 μC charges...
Consider a square of side r = 4.60 cm with two q = +9.00 μC charges at adjacent corners of the square and two p = −3.00 μC charges at the other corners. a.)Find the electric field at the center of the square. Enter a positive value if the electric field is straight down and enter a negative value if the electric field is straight up. b.)Find the potential at the center of the square.
Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the...
Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 3.50 cm . Point a is at the center of the square, and point b is at the empty corner closest to q2. Take the electric potential to be zero at a distance far from both charges. A point charge q3 = -5.00 μC moves from point a to point b. How much work is done on q3 by...
Two very long, parallel, and oppositely charged wires of length L, radius r and their centers...
Two very long, parallel, and oppositely charged wires of length L, radius r and their centers separated by a distance D, so that r << D and D << L carry charge Q, Assuming the charge is distributed uniformly on the surface of each wire, Determine the following in term of the given quantities and fundamental constants: The Electric field at the mid-point between the wires; The potential difference between wires; c. The capacitance per unit of length of the...
Two very long, parallel, and oppositely charged wires of length L, radius r and their centers...
Two very long, parallel, and oppositely charged wires of length L, radius r and their centers separated by a distance D, so that r << D and D << L carry charge Q, Assuming the charge is distributed uniformly on the surface of each wire, Determine the following in term of the given quantities and fundamental constants: The Electric field at the mid-point between the wires; The potential difference between wires; The capacitance per unit of length of the pair.
Two very long, parallel, and oppositely charged wires of length L, radius r and their centers...
Two very long, parallel, and oppositely charged wires of length L, radius r and their centers separated by a distance D, so that r << D and D << L carry charge Q, Assuming the charge is distributed uniformly on the surface of each wire, Determine the following in term of the given quantities and fundamental constants: a. The Electric field at the mid-point between the wires; b. The potential difference between wires; c. The capacitance per unit of length...
Two idential charge rod of length "l" are have charge density "ρ". Side by side (i.e....
Two idential charge rod of length "l" are have charge density "ρ". Side by side (i.e. they are placed along y-direction) one rod is placed at x=l/2 and another x=-l/2. What is a good approximation of the electric field at a far aways distance x >> l?
Consider a square which is 1.0 m on a side. Charges are placed at the corners...
Consider a square which is 1.0 m on a side. Charges are placed at the corners of the square as follows: +4.0 μC at (0, 0); +4.0 μC at (1, 1); +3.0 μC at (1, 0); -3.0 μC at (0, 1). What is the magnitude of the electric field at the square's center?
Two charged, square plates, separated by a distance of 27.5 cm and each with a side...
Two charged, square plates, separated by a distance of 27.5 cm and each with a side length of 44.8 cm, make up a parallel-plate capacitor. The electric field inside the plates is 2.80×103 N/C. If the separation distance is halved, what would the electric field inside the plates become?
1.4 [2pt] Consider two positive point charges Q at a distance 2 R from each other....
1.4 [2pt] Consider two positive point charges Q at a distance 2 R from each other. Sketch electric field lines including their direction. 1.4 ANSWER 1.5 [ 3pt] In problem 1.4, calculate electric fields (i) at a distance R to the left of the left charge, (ii) at a distance R to the right of the right charge, and (iii) at the mid-point between the two charges. Assume Q = 1C and R = 1m. 1.5 ANSWER(s) 1.6 [3pt] Same...
A square loop of wire, of side length 9.5 m, is placed on the edge of...
A square loop of wire, of side length 9.5 m, is placed on the edge of a magnetic field of strength 3 T into the page. This field can be described as a section of the Cartesian plane with x<0 (everywhere x is negative) and the loop is oriented so that it is in this plane with its right edge at x=0 (it starts entirely within the magnetic field). The wire loop is then pulled in the +x direction (out...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT