Question

The two lenses of a compound microscope are separated by a distance of 19.0 cm. If...

The two lenses of a compound microscope are separated by a distance of 19.0 cm. If the objective lens produces a lateral magnification of 12.5✕ and the overall magnification is 110✕, determine the angular magnification of the eyepiece, the focal length of the eyepiece in cm, and the focal length of the objective lens in cm.

(a) the angular magnification of the eyepiece

(b) the focal length of the eyepiece in cm. ____cm

(c) the focal length of the objective lens in cm. ___cm

Homework Answers

Answer #1

solution

a) overall magnification M = m1 X m2

linear magnification by objective = m1 = v/ u = image distance for objective lens/ object distance for objective distance

m1 = 12.5

M= 110

m2 = M/ m1 = 110/12.5 =8.8

(b)

angular magnification of eye piece m2 = D / f2

focal length of eyepiece f2 = D / m2 = 25 /8.8 = 2.84 cm

(c)

separation between objectice and eysepiece L = 19.0 cm

image distance for objective v = L - f2 = 19 - 2.84 = 16.16 cm

m1 = v / u

object distance u = v /m1 = 16.16 / 12.5 = 1.29 cm

lens formula 1/f = 1/v - 1/u

using sign convention u = -1.29 cm , v = + 16.16 cm

f= v u / (u - v)  

ffocal length of objective lens f = 16.16 X - 1.29 / ( - 1.29- 16.16) = 1.2 cm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The distance between the objective and eyepiece lenses in a microscope is 25cm . The objective...
The distance between the objective and eyepiece lenses in a microscope is 25cm . The objective lens has a focal length of 4.0mm . Part A What eyepiece focal length will give the microscope an overall angular magnification of 200? *******SHOW ALL WORK PLEASE
The focal length of the objective lens in a microscope is 0.270 cm, and an object...
The focal length of the objective lens in a microscope is 0.270 cm, and an object is placed 0.275 cm from the objective. a. How far from the objective lens will the objective image be formed? b. If the image of this object is viewed with the eyepiece adjusted for minimum eyestrain (image at the far point of the eye) for a person with normal vision. What is the needed focal length of the eyepiece lens if the distance between...
The focal length of the eyepiece of a certain microscope is 18.0 mm. The focal length...
The focal length of the eyepiece of a certain microscope is 18.0 mm. The focal length of the objective is 9.00 mm. The distance between the objective and eyepiece is 19.7 cm. The final image formed by the eyepiece is at infinity. Treat all lenses as thin. (a) What is the distance from the objective to the object being viewed? cm (b) What is the magnitude of the linear magnification produced by the objective? ✕ (c) What is the overall...
A compound microscope consists of two converging lenses: an objective lens, and an eyepiece placed 15...
A compound microscope consists of two converging lenses: an objective lens, and an eyepiece placed 15 cm behind it. The microscope magnifies a tiny object 0.25 cm in front of the objective lens, forming an enlarged final image at the near point N = 25 cm of a normal human eye. Part A) The focal length of the eye piece is fe = 5  cm. Neglecting the distance between the human eye and the eyepiece, what is the focal length fo...
A compound microscope operated in near point adjustment comprises an objective lens of focal length 2.5...
A compound microscope operated in near point adjustment comprises an objective lens of focal length 2.5 cm and an eyepiece lens of focal length 15.0 cm that are placed 20.0 cm apart. If the near-point distance is 25.0 cm, what is the overall magnification of the microscope?
Q 26:  Determine the lens separation and object location for a microscope made from an objective lens...
Q 26:  Determine the lens separation and object location for a microscope made from an objective lens of focal length +0.70-cm and an eyepiece of focal length +4.0-cm. Arrange the lenses so that a final virtual image is formed 100 cm to the left of the eyepiece and so that the angular magnification is -260 for a person with a near point of 25 cm. Part A:  Determine the object distance from the objective lens. Part B: Determine the distance between the...
The focal length of the eyepiece of a certain microscope is 20.0 mm. The focal length...
The focal length of the eyepiece of a certain microscope is 20.0 mm. The focal length of the objective is 5.00 mm. The distance between the objective and eyepiece is 19.7 cm. The final image formed by the eyepiece is at infinity. Treat all lenses as thin. (a) What is the distance from the objective to the object being viewed? ________cm (b) What is the magnitude of the linear magnification produced by the objective? _________? (c) What is the overall...
1. The focal lengths of the objective and the eyepiece of a microscope are 0.50 cm...
1. The focal lengths of the objective and the eyepiece of a microscope are 0.50 cm and 2.0 cm, respectively, and their separation adjusted for minimum eyestrain (with the final image at the viewer's far point) is 6.0 cm. The near point of the person using the microscope is 25 cm and the far point is infinity. a. If the microscope is focused on a small object, what is the distance between the object and the objective lens? b. If...
Please explain, walkthrough, and show equations. The focal length of the objective lens in a microscope...
Please explain, walkthrough, and show equations. The focal length of the objective lens in a microscope is 0.270 cm, and an object is placed 0.275 cm from the objective. a. How far from the objective lens will the objective image be formed? b. If the image of this object is viewed with the eyepiece adjusted for minimum eyestrain (image at the far point of the eye) for a person with normal vision. What is the needed focal length of the...
The eyepiece of a compound microscope has a focal length of 2.90 cm , and the...
The eyepiece of a compound microscope has a focal length of 2.90 cm , and the objective lens has f = 0.720 cm . An object is placed 0.810 cm from the objective lens. Assume a normal eye and that the final image is at infinity. a)Calculate the distance between the lenses when the microscope is adjusted for a relaxed eye. Express your answer to two significant figures and include the appropriate units. b)Calculate the total magnification. Express your answer...