Question

Thermodynamics.Processes-PV-Diagrams.MS.KC.2: A monoatomic ideal gas undergoes an isother- mal expansion that increases the volume by 50%....

Thermodynamics.Processes-PV-Diagrams.MS.KC.2: A monoatomic ideal gas undergoes an isother- mal expansion that increases the volume by 50%. No gas particles enter or leave the system. Which of the following statements are true concerning this process?

(a) The pressure decreases by 1/3.
(b) The pressure decreases by 1/2.
(c) The change in the internal energy of the gas is positive. (d) The change in the internal energy of the gas is negative. (e) The gas does work on the environment.
(f) The environment does work on the gas.
(g) Heat flows into the gas.
(h) Heat flows out of the gas.

Homework Answers

Answer #1

given
monoatomic gas
undergoes isothermal expansion, volume increases by 50 pc

for isothermal process
PV = constant
hence
P1V1 = P2V2
P2 = P1(V1/1.5V1) = P1/1.5
(P1 - P2)/P1 = (1 - 1/1.5) = 1/3
hecn epressure decreases by 1/3

now, temperature is constnat , so internal energy remains constant
and volume increases to gas does work on the environment

so, work is done on the environment, so heat flows into the system

hence
(a) The pressure decreases by 1/3.
(e) The gas does work on the environment
(g) Heat flows into the gas.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ideal gas initially at 350 K undergoes an isobaric expansion at 2.50 kPa. The volume...
An ideal gas initially at 350 K undergoes an isobaric expansion at 2.50 kPa. The volume increases from 1.00 m3 to 3.00 m3 and 13.0 kJ is transferred to the gas by heat. (a) What is the change in internal energy of the gas? kJ (b) What is the final temperature of the gas?
. A container has n = 3 moles of a monoatomic ideal gas at a temperature...
. A container has n = 3 moles of a monoatomic ideal gas at a temperature of 330 K and an initial pressure of three times the atmospheric pressure. The gas is taken through the following thermodynamic cycle: 1.- The gas is expanded isobarically (constant pressure) to Vf = 2.5∙Vi. 2.- The pressure of the gas is decreased isochorically (constant volume) to half of the initial value. 3.- The gas is compressed isobarically back to its initial volume. 4.- The...
An ideal gas at 300 K has a volume of 15 L at a pressure of...
An ideal gas at 300 K has a volume of 15 L at a pressure of 15 atm. Calculate the: (1)the final volume of the system, (2) the work done by the system, (3) the heat entering thesystem, (4) the change in internal energy when the gas undergoes a.- A reversible isothermal expansion to a pressure of 10 atm b.- A reversible adiabatic expansion to a pressure of 10 atm.
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
One mole of a monoatomic, ideal gas at initial pressure P0 and volume V0 goes to...
One mole of a monoatomic, ideal gas at initial pressure P0 and volume V0 goes to 2P0 a) along the path PV = constant, and b) at constant volume. Find the heat added to the gas in each case.
One mole of a monoatomic, ideal gas at initial pressure P0 and volume V0 goes to...
One mole of a monoatomic, ideal gas at initial pressure P0 and volume V0 goes to 2P0 a) along the path PV = constant, and b) at constant volume. Find the heat added to the gas in each case.
One mole of a monoatomic, ideal gas at initial pressure P0 and volume V0 goes to...
One mole of a monoatomic, ideal gas at initial pressure P0 and volume V0 goes to 2P0 a) along the path PV = constant, and b) at constant volume. Find the heat added to the gas in each case.
1 mole of a gas undergoes a mechanically reversible isothermal expansion from an initial volume 1...
1 mole of a gas undergoes a mechanically reversible isothermal expansion from an initial volume 1 liter to a final volume 10 liter at 25oC. In the process, 2.3 kJ of heat is absorbed in the system from the surrounding. The gas follows the following formula: V=RTP+b where V is the molar specific volume, and Tand Pare temperature (abosolute) and gas pressure respectively. Given R= 8.314 J/(mol.K) and b= 0.0005 m3. Evaluate the following a) Work (include sign) b) Change...
3 moles of a monoatomic ideal gas with Cv=(32)RT occupies a volume of 3.2L at a...
3 moles of a monoatomic ideal gas with Cv=(32)RT occupies a volume of 3.2L at a pressure of 1.9atm at point A. The gas is carried through a cycle consisting of three processes: 1. The gas is heated at constant pressure until its volume is 4.4L at point B. 2. The gas is cooled at constant volume until the pressure decreases to 1.2atm (C). 3. The gas undergoes an isothermal compression back to point A. Find W for the isochoric...
A 1.65 mol of an ideal gas (Cv=3R/2) at T=14.5 oC and P=0.2 bar undergoes the...
A 1.65 mol of an ideal gas (Cv=3R/2) at T=14.5 oC and P=0.2 bar undergoes the following two step process: first an isothermal expansion against a constant pressure of 0.1 bar until the volume is doubled; followed by a cooling to -35.6 oC at constant volume. Calculate the following thermodynamic quantities for the total process: 1) Work (w) for step 1. 2) Heat (Q) for step 1. 3) Change in internal energy (U) for step 1. 4) Change in enthalpy...