Question

An ideal gas initially at 350 K undergoes an isobaric expansion at 2.50 kPa. The volume...

An ideal gas initially at 350 K undergoes an isobaric expansion at 2.50 kPa. The volume increases from 1.00 m3 to 3.00 m3 and 13.0 kJ is transferred to the gas by heat. (a) What is the change in internal energy of the gas? kJ (b) What is the final temperature of the gas?

Homework Answers

Answer #1

Change of Internal energy is sum of heat transferred and work done on the gas
U = Q + W

Heat transferred, Q = 13.0KJ
Work done on the gas by changing Volume from V₁ to V₂ for isobaric process ( p=constant)
W = - p*(V₂ - V₁)
for this problem
W = - 2.5×103Pa · (3.0m³ - 1m³) = -5kJ
Therefore
U = 15kJ - 5kJ = 10kJ

(b)
Use Ideal gas law
p·V = N·R·T
Since pressure p and N stay constant throughout the process:
V/T = (NR)/p= constant
hence:
V1/T1 = V2/T2

T₂ = (V2/V1)T1
= (3m3/1m3)*350K
= 1050K

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ideal gas initially at 340 K is compressed at a constant pressure of 29 N/m2...
An ideal gas initially at 340 K is compressed at a constant pressure of 29 N/m2 from a volume of 3.3 m3 to a volume of 1.6 m3. In the process, 74 J is lost by the gas as heat. What are (a) the change in internal energy of the gas and (b) the final temperature of the gas?
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas...
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas expands from an initial volume of 0.70 m3 to a final volume of 1.9 m3 . a) How much work was done by the gas during the expansion? b) What were the initial temperature of the gas? c) What were the final temperature of the gas? d) What was the change in the internal energy of the gas? e) How much heat was added...
One mole of an ideal gas initially at a temperature of Ti = 7.6°C undergoes an...
One mole of an ideal gas initially at a temperature of Ti = 7.6°C undergoes an expansion at a constant pressure of 1.00 atm to three times its original volume. (a) Calculate the new temperature Tf of the gas. K (b) Calculate the work done on the gas during the expansion. kJ
If an ideal gas starts out at a pressure of 103 kPa and a volume of...
If an ideal gas starts out at a pressure of 103 kPa and a volume of 0.0330 m3 and then ends at a pressure of 248 kPa and volume of 0.0890 m3, how much work is done if it follows an isochoric process up to the final pressure, then an isobaric expansion to the final volume? If instead it had an isobaric expansion to the final volume, followed by an isochoric process to the final pressure, how much work is...
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric...
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric expansion at 1 bar and the volume increases from 0.5 L to 1 L. (a) Find the heat per mole, the work per mole done, and the change in the molar internal energy, ΔUm, the molar enthalpy, ΔHm, for this process. b) What are the entropy changes ΔSm of the system and of the surroundings? Is this process spontaneous? Justify your answer.
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from...
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from an initial volume of 48 m3 to a final volume of 30 m3 . During the process, the piston supplies 1.2 MJ of work to the gas. The gas has a constant specific heat at constant volume of 1.80 kJ/(kg∙K) and a specific gas constant of 1.48 kJ/(kg∙K). Neglect potential and kinetic energy changes. a. Determine the initial specific volume of the gas in...
An ideal diatomic gas contracts in an isobaric process from 1.15 m3 to 0.600 m3 at...
An ideal diatomic gas contracts in an isobaric process from 1.15 m3 to 0.600 m3 at a constant pressure of 1.70 ✕ 105 Pa. If the initial temperature is 445 K, find the work done on the gas, the change in internal energy, the energy transfer Q, and the final temperature. (a) the work done on the gas (in J) (b) the change in internal energy (in J) (c) the energy transfer Q (in J) (d) the final temperature (in...
One mole of an ideal gas initially at a temperature of Ti = 5.6°C undergoes an...
One mole of an ideal gas initially at a temperature of Ti = 5.6°C undergoes an expansion at a constant pressure of 1.00 atm to nine times its original volume.? (a) Calculate the new temperature Tf of the gas. _____ K (b) Calculate the work done on the gas during the expansion.? _____kJ
Thermodynamics.Processes-PV-Diagrams.MS.KC.2: A monoatomic ideal gas undergoes an isother- mal expansion that increases the volume by 50%....
Thermodynamics.Processes-PV-Diagrams.MS.KC.2: A monoatomic ideal gas undergoes an isother- mal expansion that increases the volume by 50%. No gas particles enter or leave the system. Which of the following statements are true concerning this process? (a) The pressure decreases by 1/3. (b) The pressure decreases by 1/2. (c) The change in the internal energy of the gas is positive. (d) The change in the internal energy of the gas is negative. (e) The gas does work on the environment. (f) The...
Air in a piston-cylinder device undergoes an isobaric expansion process from 280 K and 245 kPa...
Air in a piston-cylinder device undergoes an isobaric expansion process from 280 K and 245 kPa to 880 K. This is achieved by adding heat to the system under quasi-equilibrium conditions. What is the work done by the air during this process? (Use the appropriate sign convention.) What is the amount of heat transferred for this process? (Use the appropriate sign convention.) Considering the actual variation in the specific heat of air during the process, what is the change in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT