Question

a diatomic gas is in a container with a fixed volume of 0.275 m^3. Assume the...

a diatomic gas is in a container with a fixed volume of 0.275 m^3. Assume the diatomic gas has five degrees of freedom.

Part A: what is the temperature of the gas if there are 5.00 mol present and the gas is under a pressure of 1.60 atm?
_____ K

Part B: if the gas is to be heated by 230K how much heat is necessary to accomplish this task?
_______J

Part C: Repeat parts (a) and (b) for a monotomic gas. Assume the monotomic gas has three degrees of freedom.
_______K
_______J

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A container is filled with an ideal diatomic gas to a pressure and volume of P1...
A container is filled with an ideal diatomic gas to a pressure and volume of P1 and V1, respectively. The gas is then warmed in a two-step process that increases the pressure by a factor of five and the volume by a factor of three. Determine the amount of energy transferred to the gas by heat if the first step is carried out at constant volume and the second step at constant pressure. (Use any variable or symbol stated above...
A container is filled with an ideal diatomic gas to a pressure and volume of P1...
A container is filled with an ideal diatomic gas to a pressure and volume of P1 and V1, respectively. The gas is then warmed in a two-step process that increases the pressure by a factor of three and the volume by a factor of two. Determine the amount of energy transferred to the gas by heat if the first step is carried out at constant volume and the second step at constant pressure. (Use any variable or symbol stated above...
If 3.00 moles of gas in a container has a volume of 60. L and at...
If 3.00 moles of gas in a container has a volume of 60. L and at a temperature of 400. K, what is the pressure inside the container? If 1.9 moles of a gas are held in a container at 5.00 atm and 4.8x103 mL, what is the temperature of the gas? What is the mass of 72.6 L of hydrogen gas held at a temperature of -48.0°C and a pressure of 680.4 mm Hg?
3)Gas in a container is at a pressure of 1.1 atm and a volume of 5.0...
3)Gas in a container is at a pressure of 1.1 atm and a volume of 5.0 m3. (a) What is the work done on the gas if it expands at constant pressure to twice its initial volume? J (b) What is the work done on the gas if it is compressed at constant pressure to one-quarter of its initial volume? J 9)The surface of the Sun is approximately 5,550 K, and the temperature of the Earth's surface is approximately 285...
A gas is confined to a cylindrical volume with a movable piston on one end. Initially,...
A gas is confined to a cylindrical volume with a movable piston on one end. Initially, the volume of the container is 0.200 m3, and the gas is at 295 K. The gas is heated, but the piston is moved such that the temperature of the gas remains constant. (a) If there are 2.30 mol of gas in the container, write an equation for the pressure of the gas as a function of the volume of the container. (Assume SI...
9. A 2mole sample of diatomic gas is placed in a sealed container. The initial volume...
9. A 2mole sample of diatomic gas is placed in a sealed container. The initial volume of the container is 2m3 but then the lid is pushed down, causing 2500J of mechanical work to be done on the gas to compress it isobarically to 1.5m3. a) What is the pressure of the gas? (2pts) b) What is the thermal energy lost through heat by the gas? (4pts)
A 0.520-mol sample of an ideal diatomic gas at 432 kPa and 324 K expands quasi-statically...
A 0.520-mol sample of an ideal diatomic gas at 432 kPa and 324 K expands quasi-statically until the pressure decreases to 144 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. a) isothermal and adiabatic final temperature volume of the gas wrok done by the gas heat absorbed? K=?, L=?, work done?, heat absorb?
A 0.505-mol sample of an ideal diatomic gas at 408 kPa and 309 K expands quasi-statically...
A 0.505-mol sample of an ideal diatomic gas at 408 kPa and 309 K expands quasi-statically until the pressure decreases to 150 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. (a) isothermal final temperature K volume of the gas L work done by the gas J heat absorbed J (b) adiabatic final temperature K volume of the gas L...
a machinr carries 2 moles of an ideal diatomic gas thay is initially at a volume...
a machinr carries 2 moles of an ideal diatomic gas thay is initially at a volume of 0.020 m^3 and a temperature of 37 C is heated to a constant volumes at the temperature of 277 C is allowed to expand isothermally at the initial pressure, and finally it is compressed isobarically to its original volume, pressure and temperature. 1. determine the amount of heat entering the system during the cycle. 2. calculate the net work affected by the gas...
A 1.79 mol diatomic gas initially at 274 K undergoes this cycle: It is (1) heated...
A 1.79 mol diatomic gas initially at 274 K undergoes this cycle: It is (1) heated at constant volume to 707 K, (2) then allowed to expand isothermally to its initial pressure, (3) then compressed at constant pressure to its initial state. Assuming the gas molecules neither rotate nor oscillate, find (a) the net energy transferred as heat to the gas (excluding energy transferred as heat out of the gas), (b) the net work done by the gas, and (c)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT