Question

One mole of an ideal gas is expanded isothermally and irreversibly from an initial volume of...

One mole of an ideal gas is expanded isothermally and irreversibly from an initial volume of 10.0 L to a final volume of 20.0 L at a pressure equal to the final pressure and a temperature of 500 K. Calculate the value of w. Calculate the values of q. Calculate the value of ΔS (system). Calculate the values of delta S (surroundings). Calculate the values of ΔS (total).

Homework Answers

Answer #1

For isothermal process,

The equation to calculate work done is given by

, here

Here   , , ,

and ,

workdone is considered as negative because the gas expands and the system looses internal energy, or the work is done by the system.

According to first law of thermodynamics,

Since internal energy of the system we get

So

Or

Its assumed that the value of pressure

For isothermal process,

The equation to calculate work done is given by

, here

Here   , , ,

and ,

workdone is considered as negative because the gas expands and the system looses internal energy, or the work is done by the system.

According to first law of thermodynamics,

Since internal energy of the system we get

So

Or

Its assumed that the value of pressure

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1 mole of ideal gas at 270C is expanded isothermally from an initial pressure of 3...
1 mole of ideal gas at 270C is expanded isothermally from an initial pressure of 3 atm to afinal pressure of 1 atm in two ways: (a) reversibly and (b) against a constant external pressure of 1 atm. Calculate q, w, ΔU, ΔH and ΔS for each path.
One mole of ideal gas initially at 300 K is expanded from an initial pressure of...
One mole of ideal gas initially at 300 K is expanded from an initial pressure of 10 atm to a final pressure of 1 atm. Calculate ΔU, q, w, ΔH, and the final temperature T2 for this expansion carried out according to each of the following paths. The heat capacity of an ideal gas is cV=3R/2. 1. A reversible adiabatic expansion.
One mole of an ideal gas expands reversibly and isothermally from 10. bar to 1.0 bar...
One mole of an ideal gas expands reversibly and isothermally from 10. bar to 1.0 bar at 298.15K. (i)Calculate the values of w, q, ∆U and ∆H? (ii)Calculate w if the gas were to have expanded to the same final state against a constant pressure of 1 bar.
1.3 mole of an ideal gas at 300 K is expanded isothermally and reversibly from a...
1.3 mole of an ideal gas at 300 K is expanded isothermally and reversibly from a volume V to volume 4V. What is the change in entropy of the gas, in J/K?
One mole of an ideal gas does 3000 J of work on its surroundings as it...
One mole of an ideal gas does 3000 J of work on its surroundings as it expands isothermally to a final pressure of 1.00 atm and volume of 25.0 L. Determine: a) the initial volume ? b) the temperature of the gas? (Note: 1 atm = 1.01 x 105Pa, universal gas constant R = 8.31 J/mol K, 1 L = 10-3m3)
One mole of an ideal gas is compressed at a constant temperature of 55 oC from...
One mole of an ideal gas is compressed at a constant temperature of 55 oC from 16.5 L to 12.8 L using a constant external pressure of 1.6 atm. Calculate w, q, ΔH and ΔS for this process. w = (?) kJ q = (?) kJ ΔH = (?) kJ ΔS = (?) J/(mol*K)
Calculate the change in entropy for one mole of ideal gas which expands from an initial...
Calculate the change in entropy for one mole of ideal gas which expands from an initial volume of 2 L and initial temperature of 500 K to a final volume of 6 L under the following conditions. P(initial) refers to the pressure when T(initial)= 500K, V(initial)= 2 L. a) Irreversible expansion against a constant pressure of Pinitial/2 b) Irreversible expansion against a vacuum...a 'free expansion'. c) Adiabatic irreversible expansion against a constant pressure of Pfinal d) Adiabatic reversible expansion
Suppose 0.540 mol of an ideal gas is isothermally and reversibly expanded in the four situations...
Suppose 0.540 mol of an ideal gas is isothermally and reversibly expanded in the four situations given below. What is the change in the entropy of the gas for each situation? Situation (a) (b) (c) (d) Temperature (K) 250 350 400 450 Initial volume (cm3) 0.200 0.200 0.450 0.350 Final volume (cm3) 0.900 0.700 1.20 1.25 deltaS (J/K) _____ _____ _____ _____
A mole of a monatomic ideal gas is taken from an initial pressure p and volume...
A mole of a monatomic ideal gas is taken from an initial pressure p and volume V to a final pressure 3p and volume 3V by two different processes: (I) It expands isothermally until its volume is tripled, and then its pressure is increased at constant volume to the final pressure. (II) It is compressed isothermally until its pressure is tripled, and then its volume is increased at constant pressure to the final volume. Show the path of each process...
A monatomic ideal gas containing 7.95 moles at a temperature of 235 K are expanded isothermally...
A monatomic ideal gas containing 7.95 moles at a temperature of 235 K are expanded isothermally from a volume of 1.23 L to a volume of 4.44 L. a) Sketch a P vs.V graph. b) Calculate the work done by the gas. c) Calculate the heat flow into or out of the gas. d) If the number of moles is doubled, by what factors do your answers to parts (b) and (c) change? Explain.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT