Question

Consider two very large conducting plates of surface A separated by a distance d (you can...

Consider two very large conducting plates of surface A separated by a distance d (you can consider them as infinite planes). (a) If the top one carries a charge +Q and the bottom one a charge –Q, what is the electric field everywhere in space (i.e. between the planes, and outside)? (b) What is the potential difference between the plates? (c) Redo (a) and (b) if both plates carry the same charge +Q. (Q=10 C, A=10cmX10cm, d=1cm). Please explain each part.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two large parallel conducting plates are separated by a small distance 4x. The two plates are...
Two large parallel conducting plates are separated by a small distance 4x. The two plates are grounded. Charges Q and -Q are placed at distances x and 3x relative to one plate. a) How much energy is required to remove the two charges from between the plates and infinitely apart (from each other)? b) What is the force (magnitude and direction) on each charge?
Two large parallel conducting plates are separated by a small distance 4x. The two plates are...
Two large parallel conducting plates are separated by a small distance 4x. The two plates are grounded. Charges Q and -Q are placed at distances x and 3x relative to one plate. a) How much energy is required to remove the two charges from between the plates and infinitely apart (from each other)? b) What is the force (magnitude and direction) on each charge?
Two point Charges, q and -q, are separated by a distance d, both being located at...
Two point Charges, q and -q, are separated by a distance d, both being located at a distance d/2 from the infinite conducting plane. What is the magnitude of the electric force action on each charge? Find the magnitude of the electric field at the midpoint between these charges? Reference: In this instance the Conducting plate Separates -q and q (which is d distance apart above the conducting plate). The conducting plate is d/2 distance below the charges -q and...
a. Consider two infinite sheets parallel to the xy plane, separated by distance d, carrying charge...
a. Consider two infinite sheets parallel to the xy plane, separated by distance d, carrying charge densities +? and -?. Solve for and sketch the potential as a function of z. b. Consider two disks of radius R parallel to the xy plane, centered on the z axis and separated by distance d, carrying charge densities +? and -?. (In a real capacitor, the charge density will not be strictly uniform, but we will continue to ignore that for the...
Three conducting plates, each of thickness, d, and surface area, A, are placed one above the...
Three conducting plates, each of thickness, d, and surface area, A, are placed one above the other with surfaces horizontal. The plates are equally spaced, with the gap between each parallel set of surfaces also being equal to d. Potential differences are placed across the plates resulting in a net charge of −4Q on the middle plate, +Q on the lower plate and +3Q on the upper plate. Ignore edge effects in answering each of the following. (a) Discuss the...
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge...
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge densities that are equal in magnitude but opposite in sign. The difference in potential between the plates is 200 V. (a) Is the positive or the negative plate at the higher potential? (b) What is the magnitude of the electric field between the plates? (c) An electron is released from rest next to the negatively charged surface. Find the work done by the electric...
Two conducting plates with area A are separated by distance d. Between the plates is a...
Two conducting plates with area A are separated by distance d. Between the plates is a material with a dielectric constant that varies linearly from a value of unity next to one plate to K next to the other plate. (a) What is the capacitance of this device? (b) Show that this result matches the expected result when K → 1.
There are two thin, neutral, silver plates that are parallel, and are separated by a distance...
There are two thin, neutral, silver plates that are parallel, and are separated by a distance that is large compared to their thickness, but insignificant with respect to the square root of the area of any of them -One of the plates has an area four times greater than the other area than the other (A = 4a). -A small charge + q is deposited on the minor plate. -Given the induction principle, we know that a quantity q of...
Consider a "grounded" conducting sphere B. Suppose we have a second, isolated conducting sphere b which...
Consider a "grounded" conducting sphere B. Suppose we have a second, isolated conducting sphere b which carries charge Q. If B and b are separated by distance R, does the field in the space between them increase or decrease with r? Please explain concepts.
Two thin parallel conducting plates are placed 2.0 cm apart. Each plate is 2.0 cm on...
Two thin parallel conducting plates are placed 2.0 cm apart. Each plate is 2.0 cm on a side; one plate carries a net charge of 8.0μC,8.0μC, and the other plate carries a net charge of −8.0μC.−8.0μC. What is the charge density on the inside surface of each plate? What is the electric field between the plates?