Question

What holds up a neutron star?

What holds up a neutron star?

Homework Answers

Answer #1

Ans) The electrons and protons present in normal matter combine to produce neutrons at the conditions in a neutron star. Neutron stars are partially supported against further collapse by neutron degeneracy pressure, a phenomenon described by the Pauli exclusion principle, just as white dwarfs are supported against collapse by electron degeneracy pressure. However neutron degeneracy pressure is not by itself sufficient to hold up an object beyond 0.7M and repulsive nuclear forces play a larger role in supporting more massive neutron stars.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If both a neutron star and a white dwarf have a total mass of 1M®. If...
If both a neutron star and a white dwarf have a total mass of 1M®. If the radius of the white dwarf is 6 x 106 m and the neutron star has a radius of 8 km. What is the density of the neutron star? Compare the surface gravity of both stars? Assuming the neutron star is entirely made up of neutrons and the interparticle separation of a gas of density n is l ͌  n -1/3. How far apart are...
Astronomers detect stars that are rotating extremely rapidly, known as neutron stars. A neutron star is...
Astronomers detect stars that are rotating extremely rapidly, known as neutron stars. A neutron star is believed to form from the inner core of a larder star that collapsed, under its own gravitation, to a star of very small radius and very high density. Before collapse, suppose the ore of such a star is the size of our Sun (R = 7105km)with mass 2.0 times as great as the Sun, and is rotating at a frequency of 1.0 revolution every...
Consider a neutron star with a mass equal to 0.9 times the mass of the Sun,...
Consider a neutron star with a mass equal to 0.9 times the mass of the Sun, a radius of 15 km, and a rotation period of 1.3 s. What is the speed of a point on the equator of this neutron star? What is gg at the surface of this neutron star? A stationary 1.0 kg mass has a weight of 9.8 N on Earth. What would be its weight on the neutron star? How many revolutions per second are...
A neutron star consists of neutrons at approximately nuclear density. Estimate, for a 10-km-diameter neutron star...
A neutron star consists of neutrons at approximately nuclear density. Estimate, for a 10-km-diameter neutron star its mass number, its mass, the acceleration of gravity at its surface. Estimate its mass number. Estimate its mass. Estimate the acceleration of gravity at its surface.
Neutron stars are one of the possible “final states” of a star. The idea is that...
Neutron stars are one of the possible “final states” of a star. The idea is that for a sufficiently massive star, the gravitational pressure is enough to overcome the outward pressure (that comes from essentially the Pauli exclusion principle) that keeps fermions from coinciding with each other. Part A) According to quantum statistics, the OUTWARD pressure of a (neutron) fermionic gas is given by P=[(3.9?^2)/(2m)](N/V)^(5/3), where m is the mass of a neutron, and N/V is the number density of...
Neutron Star Physics Under some circumstances, an ordinary star can undergo gravitational collapse into an extremely...
Neutron Star Physics Under some circumstances, an ordinary star can undergo gravitational collapse into an extremely dense object made mostly of neutrons. This type of star is called a "neutron star". A neutron star has a mass density roughly 1014 times larger than that of ordinary solid matter. Suppose we represent an ordinary star as a uniform solid rigid sphere, both before and after the collapse. The original star's initial radius is 7.0 x 105 km (comparable to the size...
A star may collapse into an extremely dense body (called neutron star ) composed predominantly of...
A star may collapse into an extremely dense body (called neutron star ) composed predominantly of neutrons. This can happen when massive stars die in supernovas and their cores collapse. Represent the star as a uniform solid sphere both before and after the collpase. Assume no astronomical bodies are in the vicinity of the star, so no forces or torques are exerted on the star. The star’s initial radius was 9.45 × 108 m, its final radius is 15200 m,...
-- A white dwarf star does not show a pulsar but a neutron star does. Use...
-- A white dwarf star does not show a pulsar but a neutron star does. Use the principle of conservation of angular momentum to explain why this occurs. please write short answer
One particular neutron star has a mass equal to 3.00 times the mass of the sun....
One particular neutron star has a mass equal to 3.00 times the mass of the sun. You may consider this neutron star to be a sphere with a uniform density of 3.30×1017 kg/m3 !! ......compare that to the density of lead for example, at 1×104 kg/m3 . (A neutron star is created when a massive star runs out of hydrogen fuel and collapses at the end of its life. The neutron star is a very dense and spins rapidly). If...
A typical neutron star may have a mass equal to that of the Sun but a...
A typical neutron star may have a mass equal to that of the Sun but a radius of only 12 km. (a) What is the gravitational acceleration at the surface of such a star? (b) How fast would an object be moving if it fell from rest through a distance of 1.5 m on such a star? (Assume the star does not rotate.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT