Question

Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in Chemistry) demonstrated that...

Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in Chemistry) demonstrated that nuclei were very small and dense by scattering helium-4 nuclei (4He) from gold-197 nuclei (197Au). The energy of the incoming helium nucleus was 7.71 ✕ 10−13 J, and the masses of the helium and gold nuclei were 6.68 ✕ 10−27 kg and 3.29 ✕ 10−25 kg, respectively (note that their mass ratio is 4 to 197). (Assume that the helium nucleus travels in the +x direction before the collision.)

(a) If a helium nucleus scatters to an angle of 130° during an elastic collision with a gold nucleus, calculate the helium nucleus' final speed (in m/s) and the final velocity (magnitude in m/s and direction counterclockwise from the +x-axis) of the gold nucleus.

4He speed _______m/s

197Au velocity _______ m/s

197Au direction ________ ° counterclockwise from the +x-axis

(b)What is the final kinetic energy (in J) of the helium nucleus?

________ J

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in Chemistry) demonstrated that...
Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in Chemistry) demonstrated that nuclei were very small and dense by scattering helium-4 nuclei (4He) from gold-197 nuclei (197Au). The energy of the incoming helium nucleus was 7.59 ✕ 10−13 J, and the masses of the helium and gold nuclei were 6.68 ✕ 10−27 kg and 3.29 ✕ 10−25 kg, respectively (note that their mass ratio is 4 to 197). (Assume that the helium nucleus travels in the...
Ernest Rutherford demonstrated that nuclei were very small and dense by scattering helium-4 nuclei (4He) from...
Ernest Rutherford demonstrated that nuclei were very small and dense by scattering helium-4 nuclei (4He) from gold-197 (197Au). The energy of the incoming helium nucleus was 7.10 x 10-13 J, and the masses of the helium and gold nuclei were 6.68 x 10-27 and 3.29 x 10-25 kg, respectively (note that their mass ratio is 4 to 197). A helium nucleus scatters backward to an angle of 120° as measured from its original path during an elastic collision with a...
The energy of the incoming helium nucleus was 7.27  10-13 J, and the masses of the helium...
The energy of the incoming helium nucleus was 7.27  10-13 J, and the masses of the helium and gold nuclei were 6.68  10-27 and 3.29  10-25 kg, respectively (note that their mass ratio is 4 to 197). If a helium nucleus scatters to an angle of 120° during an elastic collision with a gold nucleus, calculate the helium nucleus's final speed. (Enter your answer to at least three significant figures.) Calculate the final velocity (magnitude and direction) of the gold nucleus. (Assume the...
In 1911, Ernest Rutherford and his assistants Geiger and Marsden conducted an experiment in which they...
In 1911, Ernest Rutherford and his assistants Geiger and Marsden conducted an experiment in which they scattered alpha particles (nuclei of helium atoms) from thin sheets of gold. An alpha particle, having charge +2e and mass 6.64 x 10-27 kg, is a product of certain radioactive decays. The results of the experiment led Rutherford to the idea that most of the atom’s mass is in a very small nucleus, with electrons in orbit around it. (This is the planetary classic...
In order to investigate the structure of atoms, Ernest Rutherford performed his famous experiment, in which...
In order to investigate the structure of atoms, Ernest Rutherford performed his famous experiment, in which he bombarded gold atoms with alpha particles and studied the scattering of the alpha particles. Imagine that an alpha particle (a helium nucleus, consisting of two protons and two neutrons) is initially moving along the x-axis in the positive direction straight toward an initially stationary gold nucleus (containing 79 protons and 118 neutrons) and all subsequent motion takes place along the x-axis. The alpha...
In order to investigate the structure of atoms, Ernest Rutherford performed his famous experiment, in which...
In order to investigate the structure of atoms, Ernest Rutherford performed his famous experiment, in which he bombarded gold atoms with alpha particles and studied the scattering of the alpha particles. Imagine that an alpha particle (a helium nucleus, consisting of two protons and two neutrons) is initially moving along the x-axis in the positive direction straight toward an initially stationary gold nucleus (containing 79 protons and 118 neutrons) and all subsequent motion takes place along the x-axis. The alpha...
During 1910-1911, Sir Ernest Rutherford performed a series of experiments to determine the structure of the...
During 1910-1911, Sir Ernest Rutherford performed a series of experiments to determine the structure of the atom. He aimed a beam of alpha particles (helium nuclei, of mass 6.65×10−27 kg ) at an extremely thin sheet of gold foil. Most of the alphas went right through with little deflection, but a small percentage bounced directly back. These results told him that the atom must be mostly empty space with an extremely small nucleus. The alpha particles that bounced back must...
Rutherford fired a beam of alpha particles (helium nuclei) at a thin sheet of gold. An...
Rutherford fired a beam of alpha particles (helium nuclei) at a thin sheet of gold. An alpha particle was observed to be deflected by 90.0°; its speed was unchanged. The alpha particles used in the experiment had an initial speed of 1.6 ✕ 107 m/s and a mass of 6.7 ✕ 10−27 kg. Assume the alpha particle collided with a gold nucleus that was initially at rest. Find the speed of the nucleus after the collision.
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1300 kg and was approaching at 5.00 m/s due south. The second car has a mass of 900 kg and was approaching at 23.0 m/s due west. (a) Calculate the final velocity (magnitude in m/s and direction in degrees counterclockwise from the west) of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation...
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1500 kg and was approaching at 4.00 m/s due south. The second car has a mass of 700 kg and was approaching at 18.0 m/s due west. (a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT