Question

A block-spring system has spring constant 120 N/m, frequency 100Hz and mechanical energy 29.40 J. If...

A block-spring system has spring constant 120 N/m, frequency 100Hz and mechanical energy 29.40 J. If phase angle is zero, find ratio of the kinetic to potential energy and displacement is 0.5s.
A. 0.026, 0.691 m
B. 0.013, 0.550 m
C. 0.034, 0.870m
D. 0.130, 0.870m
E. 0.045, 0.770m

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 54.5 J and a maximum displacement from equilibrium of 0.285 m. (a) What is the spring constant? N/m (b) What is the kinetic energy of the system at the equilibrium point? J (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg (d) What is the speed of the block when its displacement is 0.160 m? m/s...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 41.4 J and a maximum displacement from equilibrium of 0.284 m. (a) What is the spring constant? N/m   (b) What is the kinetic energy of the system at the equilibrium point? J   (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg   (d) What is the speed of the block when its displacement is 0.160 m? m/s  ...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 39.0 J and a maximum displacement from equilibrium of 0.260 m. (a) What is the spring constant? ___N/m (b) What is the kinetic energy of the system at the equilibrium point? ___J (c) If the maximum speed of the block is 3.45 m/s, what is its mass? ___kg (d) What is the speed of the block when its displacement is 0.160 m? ___m/s...
A horizontal block–spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block–spring system with the block on a frictionless surface has total mechanical energy E = 45 J and a maximum displacement from equilibrium of 0.23 m. (c) If the maximum speed of the block is 3.06 m/s, what is its mass? 37.27 kg 61.19 kg 35.49 kg 17.75 kg (d) What is the speed of the block when its displacement is 0.17 m? (e) Find the kinetic energy of the block at x = 0.17 m. (f) Find...
An oscillating block-spring system has a mechanical energy of 2.46 J, an amplitude of 12.5 cm,...
An oscillating block-spring system has a mechanical energy of 2.46 J, an amplitude of 12.5 cm, and a maximum speed of 1.29 m/s. Find (a) the spring constant, (b) the mass of the block and (c) the frequency of oscillation.
An oscillating block–spring system has a mechanical energy of 5.00 J, an amplitude of 22.0 cm,...
An oscillating block–spring system has a mechanical energy of 5.00 J, an amplitude of 22.0 cm, and a maximum speed of 3.20 m/s. Find the frequency of oscillation.
A 50.0 gram mass connected to a spring with a spring constant of 35 N m...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m oscillates on a horizontal, frictionless surface with an amplitude of 4.00 cm. (i) What is the total mechanical energy of the system? (ii) What is the speed of the mass when the displacement is 1.00 cm? (iii) What is the potential energy when the displacement is 3.00 cm? (iv) What is the kinetic energy when the displacement is 3.00 cm?
A 3.90 kg block hangs from a spring with spring constant 1980 N/m . The block...
A 3.90 kg block hangs from a spring with spring constant 1980 N/m . The block is pulled down 5.40 cm from the equilibrium position and given an initial velocity of 1.80 m/s back toward equilibrium. What is the frequency of the motion? What is the amplitude? What is the total mechanical energy of the motion?
Trial Spring Constant (N/m) Displacement (m) Potential Energy (J) 1 200 .1 1 2 200 .2...
Trial Spring Constant (N/m) Displacement (m) Potential Energy (J) 1 200 .1 1 2 200 .2 4 3 200 .3 9 4 200 .4 16 5 200 .5 25 25 1. In Excel, plot a graph of Potential Energy vs. Displacement and a graph of Potential Energy vs. (Displacement)2 to determine what relationship exists between the Potential Energy and displacement (linear or quadratic). Include the two graphs in the space below.
A moving 3.70kg block collides with a horizontal spring whose spring constant is 363 N/m. The...
A moving 3.70kg block collides with a horizontal spring whose spring constant is 363 N/m. The block compresses the spring a maximum distance of 13.50cm from its rest postion. The coefficient of kinetic friction between the block and the horizontal surface is 0.310. a) What is the work done by the spring in bringing the block to rest? Hint: "be careful about the sign of the work! Is it positive or negative?" b) How much mechanical energy is being dissipated...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT