Question

A block-spring system has spring constant 120 N/m, frequency 100Hz and mechanical energy 29.40 J. If...

A block-spring system has spring constant 120 N/m, frequency 100Hz and mechanical energy 29.40 J. If phase angle is zero, find ratio of the kinetic to potential energy and displacement is 0.5s.
A. 0.026, 0.691 m
B. 0.013, 0.550 m
C. 0.034, 0.870m
D. 0.130, 0.870m
E. 0.045, 0.770m

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 54.5 J and a maximum displacement from equilibrium of 0.285 m. (a) What is the spring constant? N/m (b) What is the kinetic energy of the system at the equilibrium point? J (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg (d) What is the speed of the block when its displacement is 0.160 m? m/s...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 41.4 J and a maximum displacement from equilibrium of 0.284 m. (a) What is the spring constant? N/m   (b) What is the kinetic energy of the system at the equilibrium point? J   (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg   (d) What is the speed of the block when its displacement is 0.160 m? m/s  ...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 53.9 J and a maximum displacement from equilibrium of 0.197 m. (a) What is the spring constant? N/m (b) What is the kinetic energy of the system at the equilibrium point? J (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg (d) What is the speed of the block when its displacement is 0.160 m? m/s...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 39.0 J and a maximum displacement from equilibrium of 0.260 m. (a) What is the spring constant? ___N/m (b) What is the kinetic energy of the system at the equilibrium point? ___J (c) If the maximum speed of the block is 3.45 m/s, what is its mass? ___kg (d) What is the speed of the block when its displacement is 0.160 m? ___m/s...
A horizontal block–spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block–spring system with the block on a frictionless surface has total mechanical energy E = 45 J and a maximum displacement from equilibrium of 0.23 m. (c) If the maximum speed of the block is 3.06 m/s, what is its mass? 37.27 kg 61.19 kg 35.49 kg 17.75 kg (d) What is the speed of the block when its displacement is 0.17 m? (e) Find the kinetic energy of the block at x = 0.17 m. (f) Find...
An oscillating block-spring system has a mechanical energy of 2.46 J, an amplitude of 12.5 cm,...
An oscillating block-spring system has a mechanical energy of 2.46 J, an amplitude of 12.5 cm, and a maximum speed of 1.29 m/s. Find (a) the spring constant, (b) the mass of the block and (c) the frequency of oscillation.
An oscillating block-spring system has a mechanical energy of 1.53 J, an amplitude of 9.82 cm,...
An oscillating block-spring system has a mechanical energy of 1.53 J, an amplitude of 9.82 cm, and a maximum speed of 2.41 m/s. Find (a) the spring constant, (b) the mass of the block and (c) the frequency of oscillation.
An oscillating block–spring system has a mechanical energy of 5.00 J, an amplitude of 22.0 cm,...
An oscillating block–spring system has a mechanical energy of 5.00 J, an amplitude of 22.0 cm, and a maximum speed of 3.20 m/s. Find the frequency of oscillation.
1) A 2.0kg mass is fastened to the end of a spring with a spring constant...
1) A 2.0kg mass is fastened to the end of a spring with a spring constant of 200 N/m. At t = 0 the mass is at equilibrium position and has a velocity of +1.0m/s. a) What is the angular frequency, frequency and period (include units)? b)From the initial conditions, calculate the amplitude and phase angle of the oscillation, then express its displacement, velocity and acceleration as functions of time. Remember that the amplitude is positive. c) Tabulate the displacement,...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m oscillates on a horizontal, frictionless surface with an amplitude of 4.00 cm. (i) What is the total mechanical energy of the system? (ii) What is the speed of the mass when the displacement is 1.00 cm? (iii) What is the potential energy when the displacement is 3.00 cm? (iv) What is the kinetic energy when the displacement is 3.00 cm?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT