Question

In a photoelectric-effect experiment it is observed that no current flows unless the wavelength is less...

In a photoelectric-effect experiment it is observed that no current flows unless the wavelength is less than 490 nm .

What is the work function of this material?

Express your answer using two significant figures.

W0 =

  

eV

What is the stopping voltage required if light of wavelength 420 nm is used?

Express your answer using two significant figures.

V0 =

  

V

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a photoelectric-effect experiment it is observed that no current flows unless the wavelength is less...
In a photoelectric-effect experiment it is observed that no current flows unless the wavelength is less than 430 nm . Part A What is the work function of this material? Express your answer using two significant figures. W0 =    eV Part B What is the stopping voltage required if light of wavelength 380 nm is used? Express your answer using two significant figures. V?0 =    V
In a photoelectric-effect experiment it is observed that no current flows unless the wavelength is less...
In a photoelectric-effect experiment it is observed that no current flows unless the wavelength is less than 570 nm . What is the stopping voltage required if light of wavelength 450 nm is used? Express your answer using two significant figures. stopping voltage = ? v
In a photoelectric-effect experiment, the stopping potentials was measured as 1.0 V for light of wavelength...
In a photoelectric-effect experiment, the stopping potentials was measured as 1.0 V for light of wavelength 600 nm, 2.0 V for 400 nm, and 3.0 V for 300 nm. Determine the work function for this material and the implied value of Planck’s constant h (graphically)
A) Within a photoelectric effect experiment, light shines on the surface of a metal plate and...
A) Within a photoelectric effect experiment, light shines on the surface of a metal plate and the stopping voltage is measured. a) If the light intensity is decreased, what happens to the stopping voltage? decreases increases     stays the same not enough information b) If the light intensity is decreased, what happens to the number of electrons emitted? decreases increases     stays the same not enough information c) If the light wavelength is decreased, what happens to the KE of the emitted...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work function of Magnesium is 3.68 eV. (a) What is the maximum kinetic energy of the emitted electrons, in eV? (b)What is the maximum velocity of the emitted electrons, in m/s? (c) What is the stopping potential, in Volts, that results in no collected photoelectrons? (d) Light of wavelength 235 nm is now incident on lead (work function 5.40 eV). What is the maximum kinetic...
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in...
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in a photoelectric experiment is observed to be 0.850 V. a) What is the work function φ of the metal? (eV) b) What is the maximum kinetic energy of the ejected electrons (in Joules)? c) What is the longest wavelength light that will still allow electrons to escape the metal?(nm)
In a photoelectric experiment it is found that a stopping potential of 1.00 V is needed...
In a photoelectric experiment it is found that a stopping potential of 1.00 V is needed to stop all the electrons when incident light of wavelength 262 nm is used and 2.2 V is needed for light of wavelength 207 nm. From these data determine Planck's constant and the work function of the metal.   eV·s? eV?
Two light sources are used in a photoelectric experiment to determine the work function for a...
Two light sources are used in a photoelectric experiment to determine the work function for a particular metal surface. When green light from a mercury lamp (λ = 546.1 nm) is used, a stopping potential of 0.954 V reduces the photocurrent to zero. (a) Based on this measurement, what is the work function for this metal? eV (b) What stopping potential would be observed when using light from a red lamp (λ = 628.0 nm)? V
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
Potassium and gold cathodes are used in a photoelectric-effect experiment. For each cathode, find: 1. The...
Potassium and gold cathodes are used in a photoelectric-effect experiment. For each cathode, find: 1. The threshold frequency 2. The threshold wavelength 3. The maximum electron ejection speed if the light has a wavelength of 210 nm 4. The stopping potential if the wavelength is 210 nm. Throughout this problem, be sure to use 6.63 x 10^-34 J•s for Planck's constant.