Question

Two blocks with masses M1 and M2 are connected by a massless string that passes over...

Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown.

M1 has a mass of 2.25 kg and is on an incline of θ1=46.5∘ with coefficient of kinetic friction μ1=0.205.

M2 has a mass of 6.05 kg and is on an incline of θ2=33.5∘ with coefficient of kinetic friction μ2=0.105.

The two‑block system is in motion with the block of mass M2 sliding down the ramp.

Find the magnitude a2 of the acceleration of M2 down the incline.

Homework Answers

Answer #1

Acceleration of M 2 = 1.02 m/s^2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 49.5° with coefficient of kinetic friction ?1 = 0.205. M2 has a mass of 5.45 kg and is on an incline of 31.5° with coefficient of kinetic friction ?2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.
Two blocks (m1=5.5kg, m2=7.2kg ) are connected by a string that passes through a massless pulley...
Two blocks (m1=5.5kg, m2=7.2kg ) are connected by a string that passes through a massless pulley as shown in the Figure. The first block with mass m1  slides up the inclined plane when the system is released. The inclined plane makes an angle  θ = 310  with the horizontal and the kinetic friction coefficient between the inclined plane and   m1 is =0.35.   Take  g=10m/s2 Find the speed of the block with mass m2 after it travels h=5.6m.
Two blocks with mass m1 = 7.6 kg and m2 = 8.1 kg are connected by...
Two blocks with mass m1 = 7.6 kg and m2 = 8.1 kg are connected by a massless string over a frictionless and massless pulley. The angle of the incline is equal to 32.5°. The kinetic coefficient of friction between m1 and the incline is 0.11. What is the minimum value of the static friction coefficient that will prevent m1 from starting to move if it is at rest. Find the magnitude of the acceleration of the system if m1...
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by...
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by a massless string. They are released from rest. The coefficent of kinetic friction between the upper block and the surface is 0.440. Assume that the pulley has a negligible mass and is frictionless, and calculate the speed of the blocks after they have moved a distance 68.0 cm.
Two blocks are connected by a string that passes over a massless, frictionless pulley, as shown...
Two blocks are connected by a string that passes over a massless, frictionless pulley, as shown in the figure. Block A, with a mass mA = 2.00 kg, rests on a ramp measuring 3.0 m vertically and 4.0 m horizontally. Block B hangs vertically below the pulley. Note that you can solve this exercise entirely using forces and the constant-acceleration equations, but see if you can apply energy ideas instead. Use g = 10 m/s2. When the system is released...
Two blocks are attached to opposite ends of a string that passes over a massless, frictionless...
Two blocks are attached to opposite ends of a string that passes over a massless, frictionless pulley (see the figure). Block ? of mass 10.0 kg lies on a 60.0° incline with a coefficient of friction of 0.500, and block ? of mass 1.00 kg is attached to a vertical spring of force constant 200 N/m. The blocks are initially at rest with the spring at equilibrium. Find the maximum height that the block ? rises.
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string....
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string. When a horizontal force F = 105 N is applied to m1 as shown in the figure below, the acceleration of the system is 3.20 m/s2 towards the left and the tension in the string connecting the two blocks is 62.0 N. The blocks are moving on a rough surface with an unknown coefficient of kinetic friction. Determine the coefficient of kinetic friction between...
Two blocks are connected by a massless string that runs across a frictionless pulley with a...
Two blocks are connected by a massless string that runs across a frictionless pulley with a mass of 5.00 kg and a radius of 10.0 cm. The first block with an unknown mass of m1 sits on a horizontal surface and is also connected to a spring with a spring constant of k = 250 N/m. The coefficient of kinetic friction between the first block and the surface is 0.400. The second block with a mass of m2 = 6.00...
Two masses are connected to one another with a massless rope that passes over a massless...
Two masses are connected to one another with a massless rope that passes over a massless and frictionless pulley as shown in the figure below. When the two mass system is released from rest, the hanging mass m2 = 31.5 kg accelerates upward at a rate of 2.3 m/s2. The coefficient of kinetic friction between m1 and the incline is 0.08, and the angle of inclination of the ramp is 57 degrees. For the entirety of this problem, air resistance...
Two blocks of masses m1 = 1.5 kg and m2 = 3.0 kg are connected with...
Two blocks of masses m1 = 1.5 kg and m2 = 3.0 kg are connected with a string that passes over a very light pulley (Figure 1). Friction in the pulley can be ignored. Block 1 is resting on a rough table and block 2 is hanging over the edge. The coefficient of friction between the block 1 and the table is 0.70 (assume static and kinetic friction have the same value). Block 1 is also connected to a spring...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT