Question

1. A hydrogen atom, initially in the first excited state (initial ni = 2), absorbs a...

1. A hydrogen atom, initially in the first excited state (initial ni = 2), absorbs a photon of wavelength 656.30 nm.

(a) (5) What is the final state ? In other words, solve for the FINAL nf . Show all work.
(b) (5) What would be the wavelength of a photon, which , when absorbed by the atom, ionizes an electron from the first excited level ?

2. X-rays with initial wavelength λ = 0.0665 nm undergo Compton scattering.

(a) (5) At what photon scattering angle Ø is the largest change in wavelength λ’ – λ according to the Compton scattering formula?

(b) (5) What is the final wavelength λ’ of the scattered photon at the angle of part (a)?

3. An electron has a de Broglie wavelength of 2.80x10 -10 m. Find:
(a) (2) the magnitude p of its momentum

(b) (3) its kinetic energy.
Note: Electron mass = 9.11x10-31 kg.

4. What is the de Broglie wavelength for an electron with speed v = 0.96c?

Hint: Use the correct relativistic expression for linear momentum magnitude p. Note: Electron mass = 9.11x10-31 kg.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A photon of wavelength 5.58 pm scatters at an angle of 122° from an initially stationary,...
A photon of wavelength 5.58 pm scatters at an angle of 122° from an initially stationary, unbound electron. What is the de Broglie wavelength(in pm) of the electron after the photon has been scattered?? Notice: Answer is not (9.29, 2.12, 2.06, nor 4.11)pm Explanation: The de Broglie wavelength of a massive particle is related to its momentum in the same way that a photon's momentum is related to its wavelength. The well-known Compton scattering relationship gives the final wavelength of...
A hydrogen atom (Z = 1) is in the third excited state, and a photon is...
A hydrogen atom (Z = 1) is in the third excited state, and a photon is either emitted or absorbed. Determine (a) the quantum number nf of the final state (b) the energy of the photon when the photon is emitted with the shortest possible wavelength (c) the quantum number nf of the final state (d) the energy of the photon when the photon is emitted with the longest possible wavelength (e) the quantum number nf of the final state...
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm....
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm. What energy level does the electron reach? b) This excited atom then emits a photon of wavelength 1875.4 nm. What energy level does the electron fall to?
Suppose that an electron is in an excited state of a Hydrogen atom at the n...
Suppose that an electron is in an excited state of a Hydrogen atom at the n = 4 energy level. (a) How many different states are available for that electron to occupy?(b) Suppose that the electron falls directly to the ground state, causing a single photon to be released from the atom. What is the photon’s wavelength? (c) After its release, the photon collides with an electron at rest, and scatters off at a 60o angle with respect to its...
Suppose that an electron is in an excited state of a Hydrogen atom at the n...
Suppose that an electron is in an excited state of a Hydrogen atom at the n = 4 energy level. (a) How many different states are available for that electron to occupy? (b) Suppose that the electron falls directly to the ground state, causing a single photon to be released from the atom. What is the photon’s wavelength?   (c) After its release, the photon collides with an electron at rest, and scatters off at a 60o angle with respect to...
1) If initially a photon has a wavelength of λ = 1 nm, and assuming that...
1) If initially a photon has a wavelength of λ = 1 nm, and assuming that every time the photon scatters it is off a stationary electron, what is the minimum number of Compton scattering events it would take to increase the wavelength by a factor of 5?
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited...
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited (nf = 6) from the ground state electron configuration. What is the energy change of the electron associated with this transition? b. After some time in the excited state, the electron falls from the n = 6 state back to its ground state. What is the change in energy of the electron associated with this transition? c. When the electron returns from its excited...
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy...
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy level does the electron reach? This excited atom then emits a photon of wavelength 434.1 nm. What energy level does the electron fall to? -I know this question has already been asked on Chegg but each question I go to has different calculations and I can't get the right answer.
A hydrogen atom is in its third excited state. The atom emits a 1.88E+3nm wavelength photon....
A hydrogen atom is in its third excited state. The atom emits a 1.88E+3nm wavelength photon. Determine the maximum possible orbital angular momentum of the electron after emission. Express your answer as multiples of hbar.
A hydrogen atom (Z=1) is in the third excited state. It makes a transition to a...
A hydrogen atom (Z=1) is in the third excited state. It makes a transition to a different state, and a photon is either emitted or absorbed. Answer the following conceptual questions: What is the quantum number of the third excited state? When an atom emits a photon, is the final quantum number of the atom greater than or less than the initial quantum number? When an atom absorbs a photon, is the final quantum number of the atom greater than...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT