Question

A positive charge (very small sphere) q2=+5μC, m=1g is hung from silk thread of length 1m...

A positive charge (very small sphere) q2=+5μC, m=1g is hung from silk thread of length 1m (as shown) between two big charged planes. Left plane is positively charged, right plane is negatively charged. If Θ =30, what is the magnitude of the electric field between the plates? What is the potential difference between these two planes? Show free-body diagram.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A long uniformly charged thread (linear charge density λλlambda = 1.7 C/mC/m ) lies along the...
A long uniformly charged thread (linear charge density λλlambda = 1.7 C/mC/m ) lies along the xxx axis in the figure.(Figure 1) A small charged sphere (QQQ = -2.3 CC ) is at the point x=0cmx=0cm, y=−5.0cmy=−5.0cm. What is the direction of the electric field at the point x=7.0cmx=7.0cm, y=7.0cmy=7.0cm? E⃗ threadE→thread and E⃗ QE→Q represent fields due to the long thread and the charge QQ, respectively. Express your answer to two significant figures and include the appropriate units. What...
Two small insulating spheres with radius 6.00×10−2 mm are separated by a large center-to-center distance of...
Two small insulating spheres with radius 6.00×10−2 mm are separated by a large center-to-center distance of 0.460 mm . One sphere is negatively charged, with net charge -1.00 μCμC , and the other sphere is positively charged, with net charge 3.30 μCμC . The charge is uniformly distributed within the volume of each sphere. a) What is the magnitude EE of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0ϵ0= 8.85×10−12 C2/(N⋅m2)C2/(N⋅m2) .
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge...
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge densities that are equal in magnitude but opposite in sign. The difference in potential between the plates is 200 V. (a) Is the positive or the negative plate at the higher potential? (b) What is the magnitude of the electric field between the plates? (c) An electron is released from rest next to the negatively charged surface. Find the work done by the electric...
Consider the following apparatus for measuring the charge per mass (q/m) ratio of the proton. This...
Consider the following apparatus for measuring the charge per mass (q/m) ratio of the proton. This apparatus employs the same physics as in mass spectrometers. It consists of a pair of plates that accelerate a beam of protons starting from rest at the left-most plate to a speed of 1 x 107 m/s, followed by a velocity selector set to only pass this speed, and a final set of deflector plates. (a) The left side of the accelerator plate is...
When we observe two charged balloons dangling from thin thread, they can repel each other. We...
When we observe two charged balloons dangling from thin thread, they can repel each other. We tend to use small thin water balloons so they behave the right way. The balloons accumulated approximately equal amounts of charge. If we touch them together they can share charge and have equal charge. You are going to hang the two charged balloons from a rod/stick, on a string hung over the rod—making an inverted V like picture. The balloons will then repel. The...
1. What potential difference is needed to accelerate a He+ ion (charge +e, mass 4u) from...
1. What potential difference is needed to accelerate a He+ ion (charge +e, mass 4u) from rest to a speed of 1.1×106 m/s ? 2. Two 2.00 cm × 2.00 cm plates that form a parallel-plate capacitor are charged to ± 0.708 nC . a) What is the electric field strength inside the capacitor if the spacing between the plates is 1.30 mm ? b)What is potential difference across the capacitor if the spacing between the plates is 1.30 mm...
10. A spherical conductor of radius R = 1.5cm carries the charge of 45μ, (a) What...
10. A spherical conductor of radius R = 1.5cm carries the charge of 45μ, (a) What is the charge density (ρ) of the sphere? (b) Calculate the electric field at a point r = 0.5cm from the center of the sphere. (c) What is the electric field on the surface of the sphere? 11. Two capacitors C1 and C2 are in series with a voltage V across the series combination. Show that the voltages V1 and V2 across C1 and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT