Question

If a object of mass m is dropped from rest from a height h in free...

If a object of mass m is dropped from rest from a height h in free fall motion, what is the kinetic energy when it is a height h/4 above the ground?

Homework Answers

Answer #1

we have v ^2 - u^2 = 2gh

at height h/4   v^2 = 2 g h/4         (freely falling u = 0)

                                = gh/2

kinetic energy K = 1/2 mv^2

                             1/2 m (gh/2)

                           = mgh/4

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4.0 kg mass starting at rest is dropped from a height of 120 m above...
A 4.0 kg mass starting at rest is dropped from a height of 120 m above the surface of the Earth. As it falls it experiences an air resistance of 13 N. Just before it strikes the ground, determine the change in potential energy ΔU, the work done by the air W, the final kinetic energy Kf, and its final speed vf
A 4.0 kg mass starting at rest is dropped from a height of 120 m above...
A 4.0 kg mass starting at rest is dropped from a height of 120 m above the surface of the Earth.  As it falls it experiences an air resistance of 13 N.  Just before it strikes the ground, determine the change in potential energy ΔU, the work done by the air W, the final kinetic energy Kf, and its final speed vf.
A stone 0.44 kg mass is released from rest from a height of 29.4 m above...
A stone 0.44 kg mass is released from rest from a height of 29.4 m above the ground. Ignoring air resistance and letting the ground be the zero potential energy level, Determine the final kinetic energy of the stone using energy conservation principle only, not as a free fall. Determine the work done on the stone by gravity.
An 80 kg object is dropped from rest from a height of 25 meters above the...
An 80 kg object is dropped from rest from a height of 25 meters above the ground. Use the concept of energy conservation to find its speed when it is 10 meters above the ground. (Please explain, very confuse)
An object is dropped from a height of 50 meters starting at rest. Using the principle...
An object is dropped from a height of 50 meters starting at rest. Using the principle of conservation of energy, What is its final velocity just before it hits the ground? What is the time it takes to fall?
1)A object is released from rest from a height of 1.8 m and moves down the...
1)A object is released from rest from a height of 1.8 m and moves down the incline as shown. What is the angular speed of the object when it reaches the horizontal surface? (ignore the rotational kinetic energy, friction force, drag force).The mass of the object is 50.0 kg. a)5.9 m/s b)3.3 m/s c) 2.5 m/s d)1.8 m/s 2) a 5.0 kg bird, accelerating from rest at a constant rate, experiences a displacement of 28 m in 11 seconds. What...
A small object begins a free-fall from a height of H = 86.5 m at t0...
A small object begins a free-fall from a height of H = 86.5 m at t0 = 0s. After tau = 2.65s, a second small object is launced vertically up from the ground with the initial velocity v0 = 41.2 m/s. At what height from the gound will the two objects first meet?
An object is dropped from the roof of a building of height h. Neglect air resistance....
An object is dropped from the roof of a building of height h. Neglect air resistance. During the last 0.61 s of its fall, the object drops a distance h/3 before hitting the ground. What is h in meters?
A 190g object is dropped from a height of 7m. Calculate the potential and kinetic energy...
A 190g object is dropped from a height of 7m. Calculate the potential and kinetic energy of the object when it is at 3m from the ground.
A rock is dropped, from rest, from a height of 8.9 m above the ground at...
A rock is dropped, from rest, from a height of 8.9 m above the ground at t = 0 s. At the same time that the rock is dropped a stone is thrown upward from a height of 1.1 m above the ground at a speed of 7.1 m/s. The stone travels straight upward toward the rock. There is no air resistance. a. Determine the height above the ground where the rock hits with the stone. Blank 1. Calculate the...