Question

A stretched string of length l is plucked at a distance l/3 from one end by...

A stretched string of length l is plucked at a distance l/3 from one end by an amount h. Find the point/s
on the string where the amplitude of the second harmonic is maximum. Now, what change would you
expect to hear in the harmonics if you pluck the string at these particular point/s?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stretched string of length L is plucked at a position L/3 by producing an initial...
A stretched string of length L is plucked at a position L/3 by producing an initial displacement h and then releasing the string. Determine the resulting amplitudes for the fundamental and the first three harmonic overtones. Sketch the wave shapes of these individual waves and the shape of the string resulting from the linear combination of these waves at t = 0. Repeat for t = L/c, where c is the transverse wave speed on the string.
A stretched string fixed at each end has a mass of 46.0 g and a length...
A stretched string fixed at each end has a mass of 46.0 g and a length of 9.00 m. The tension in the string is 52.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (Enter your answers from smallest to largest distance from one end of the string.) nodes: m m m m antinodes: m m m (b) What is the vibration frequency for this harmonic? Hz
A stretched string fixed at each end has a mass of 39.0 g and a length...
A stretched string fixed at each end has a mass of 39.0 g and a length of 7.20 m. The tension in the string is 44.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (Enter your answers from smallest to largest distance from one end of the string.) nodes: m m m m antinodes: m m m (b) What is the vibration frequency for this harmonic? Hz
A stretched string fixed at each end has a mass of 40.0 g and a length...
A stretched string fixed at each end has a mass of 40.0 g and a length of 7.20 m. The tension in the string is 40.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (Answer from smallest to largest distance from one end of the string.) nodes _____0________m _____2.40________m _____4.80_______m _____7.20_______m antinode _____1.20________m _____3.60________m _____6.00_______m (b) What is the vibration frequency for this harmonic? _____________Hz *For part (b), I keep getting 127.3 Hz which...
A stretched string fixed at each end has a mass of 36.0 g and a length...
A stretched string fixed at each end has a mass of 36.0 g and a length of 7.60 m. The tension in the string is 48.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (Enter your answers from smallest to largest distance from one end of the string.) nodes: _____ m _____m _____m _____m antinodes: _____m _____m _____m (b) What is the vibration frequency for this harmonic? ________ Hz A train at a speed...
A uniform string of length l and mass m hangs by one end from the ceiling....
A uniform string of length l and mass m hangs by one end from the ceiling. (a) Prove the speed of sound in the string a distance y above the bottom is vs = √gy, where g is the acceleration due to gravity. Hint: The tension in the string is due to string’s mass under the influence of gravity, and that tension increases as you go higher up the string. (b) You quickly and gently hit the bottom of the...
A guitar string of length 72.8 cm (which might be out of tune) has been plucked...
A guitar string of length 72.8 cm (which might be out of tune) has been plucked and is producing a note of frequency 334 Hz. (a) What is the speed of transverse traveling waves on this guitar string? Give your answer in m/s. HINT: The note you hear is produced by the vibrational mode of the string which has the fundamental (lowest possible) frequency. Draw a picture of the string vibrating in that mode and determine the wavelength of the...
A 1.50-m string of weight 0.0125 N is tied to the ceiling at its upper end,...
A 1.50-m string of weight 0.0125 N is tied to the ceiling at its upper end, and the lower end supports a weight ?. (Ignore the very small variation in tension along the length of the string that is produced by the weight of the string.) When you pluck the string slightly, you notice that the waves traveling up the string have amplitude 8.00 mm, wavelength 0.040 m and speed 12.0 m/s. Assuming that up is the positive direction, which...
A small ball of clay of mass m hangs from a string of length L (the...
A small ball of clay of mass m hangs from a string of length L (the other end of which is fixed). A seond ball of clay of mass m/3 is to be launched horizontally out of a spring with spring constant k. Once launched, the second ball will collide with and stick to the hanging ball, and they'll follow a circular path around the fixed end of the string. A) Determine an expression for the distance (change in x)...
Two speakers are separated by a distance of 2.3m. A point P is placed at 4.7m from one of the speakers...
Two speakers are separated by a distance of 2.3m. A point P is placed at 4.7m from one of the speakers so that they form a right triangle. If the speed of sound in this situation is 344m/s and the speakers are in phase, what is the lowest frequency for which the intensity at P is: a) a maximum?   b) a minimum? The 2nd harmonic of a string of length 45cm and linear mass density 2.6g/m has the same frequency as the 5th possible harmonic of a closed pipe of length 1.4m. Find...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT