Question

When a charged particle enters a magnetic field traveling so that its velocity vector is perpendicular...

When a charged particle enters a magnetic field traveling so that its velocity vector is perpendicular to the magnetic field, B, then its path will be

Homework Answers

Answer #1

The direction of force is given by right hand rule. For a positive charge, with velocity along rightwards on the paper, magnetic field along into the paper, the direction of magnetic force is along upwards. So, the force will tend to change the direction of motion finally along the force, but again in this condition, the direction will be mutually perpendicular to both velocity and field. and hence it will keep changing the direction of motion, finally making the path circular. So, When a charged particle enters a magnetic field traveling so that its velocity vector is perpendicular to the magnetic field, B, then its path will be circular.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
How does a steady magnetic field affect the velocity of moving charged particle when the velocity...
How does a steady magnetic field affect the velocity of moving charged particle when the velocity is perpendicular to the magnetic field?
When a charged particle enters a region of uniform magnetic field that is directed perpendicularly to...
When a charged particle enters a region of uniform magnetic field that is directed perpendicularly to the particle's velocity, the charged particle... follows a curved trajectory of constant radius of curvature. continues in straight-line motion.   follows a curved trajectory that is in the shape of a parabola.
A charged particle enters a uniform magnetic field and follows the circular path shown in the...
A charged particle enters a uniform magnetic field and follows the circular path shown in the drawing. The particle's speed is 167 m/s, the magnitude of the magnetic field is 0.707 T, and the radius of the path is 659 m. Determine the mass of the particle, given that its charge has a magnitude of 6.68 × 10-4 C. '
a charged particle with a component of velocity along the magnetic field line and a component...
a charged particle with a component of velocity along the magnetic field line and a component of velocity perpendicular to the magnetic field line will be: a) transgress around the velocity b) have an elliptical orbit around the magnetic field line c) spiral around the magnetic field line d) be repelled by the magnetic field line
A beam of protons traveling at 1.20 km/s enters a uniform magnetic field, traveling perpendicular to...
A beam of protons traveling at 1.20 km/s enters a uniform magnetic field, traveling perpendicular to the field. The beam exits the magnetic field, leaving the field in a direction perpendicular to its original direction (the figure (Figure 1)). The beam travels a distance of 1.10 cm while in the field. a. What is the magnitude of the magnetic field?
An electron enters a magnetic field of 0.14 T with a velocity perpendicular to the direction...
An electron enters a magnetic field of 0.14 T with a velocity perpendicular to the direction of the field. What is the value f ×10-10, where f is the frequency (in Hz) at which the electron traverse a circular path?
A beam of protons traveling at 1.40 km/s enters a uniform magnetic field, traveling perpendicular to...
A beam of protons traveling at 1.40 km/s enters a uniform magnetic field, traveling perpendicular to the field. The beam exits the magnetic field in a direction perpendicular to its original direction (Figure 1). The beam travels a distance of 1.70 cm while in the field. What is the magnitude of the magnetic field? Express your answer in teslas to three significant figures.
A charged particle (q, m) enters a uniform magnetic field B (extends upto a length w)...
A charged particle (q, m) enters a uniform magnetic field B (extends upto a length w) at right angles with speed v . The speed of the particle in magnetic field does not change. But it gets deviated in the magnetic field in a circular path and leaves the magnetic field with a angle theeta. Its lateral displacement is D. Show that D= mv/qB(1-(1-(qbw/mv)^2)^1/2)  
An electron moving with velocity v enters a constant magnetic field. What will its path through...
An electron moving with velocity v enters a constant magnetic field. What will its path through the field look like if it enters (a) parallel to the field direction? (b) perpendicular to the field direction? (c) at some other angle to the field direction?
A negatively charged particle (m=7x10^-27kg and q=-1.6x10^-19C) enters a velocity selector where the electric field is...
A negatively charged particle (m=7x10^-27kg and q=-1.6x10^-19C) enters a velocity selector where the electric field is upward and 12,000 V/m. The magnetic field has a magnitude of 5 milliTesla. 1.) What is the speed of the particle? 2.) What is the direction of the B1 field? 3.) If it enters a second magnetic field B2=0.4 Tesla, directed into the page, what is the radius of the path? Start from Fc=mv^2/r = Fe 4.) Does it bend clockwise or counterclockwise?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT