Question

1. Two blocks are in static equilibrium (a) If block A has a mass of 15...

1. Two blocks are in static equilibrium

(a) If block A has a mass of 15 kg and coefficient of static friction 0.2 find the maximum mass of block b

(b) If an extra 5 kg are added to B find the acceleration of A and tension T in the rope. (coefficient of kinetic friction os 0.17)

Homework Answers

Answer #1

(a)
  

Calculate the maximum mass of block B.




Thus, the maximum mass of block is 3 kg.

(b) If extra 5 kg are added to B, the mass of B would become 3+5 = 8 kg.

The tension in the rope can be calculated as-

The acceleration of A is -



Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two blocks are attached by a massless wire block A has a mass of 0.75kg and...
Two blocks are attached by a massless wire block A has a mass of 0.75kg and block B has a mass of 1kg. The blocks have coefficients of static friction µkA =0.5 and µkB=0. The blocks slide down the slope which is at an angle θ =25º to the horizontal. a) Draw a free body diagram of each block indicating the coordinate system and labelling all of the forces on the blocks b) Write down two Newton’s second law equations...
Two blocks are positioned on surfaces, each inclined at the same angle of 46.3 degrees with...
Two blocks are positioned on surfaces, each inclined at the same angle of 46.3 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 2.25 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.440. Assume static friction has been overcome and that everything can slide....
Two blocks of equal mass mA=mB= 4.75 kgkg are connected by a rope over a frictionless...
Two blocks of equal mass mA=mB= 4.75 kgkg are connected by a rope over a frictionless pulley, as shown in the figure. Block B begins to fall and pulls Block A up the incline. Block A is on a rough incline with the coefficient of kinetic friction of μk =0.10 between the block and the incline. The angle of the incline is θ=30°. a) Calculate the normal force on block A. b) Calculate the frictional force on block A from...
Two blocks are positioned on surfaces, each inclined at the same angle of 45.4 degrees with...
Two blocks are positioned on surfaces, each inclined at the same angle of 45.4 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 4.22 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.370. Assume static friction has been overcome and that everything can slide....
Two blocks are positioned on surfaces, each inclined at the same angle of 44.9 degrees with...
Two blocks are positioned on surfaces, each inclined at the same angle of 44.9 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 5.40 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.460. Assume static friction has been overcome and that everything can slide....
Two blocks are positioned on surfaces, each inclined at the same angle of 51.6 degrees with...
Two blocks are positioned on surfaces, each inclined at the same angle of 51.6 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 4.38 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.290. Assume static friction has been overcome and that everything can slide....
In the figure, two blocks are shown with an inclined plane. The two blocks are connected...
In the figure, two blocks are shown with an inclined plane. The two blocks are connected by a massless string strung over a massless pulley. The mass of Block #1 is 3.57 kg and that of Block #2 is 11.0 kg. The angle θ of the incline is 43.0 degrees. The plane is NOT smooth and has a coefficient of static friction of 0.570 and a coefficient of kinetic friction of 0.240. Taking the positive direction to be up the...
3. Two blocks of mass m and M = 10.0 ks are connected via a massless...
3. Two blocks of mass m and M = 10.0 ks are connected via a massless and frictionless pully with a configuration as shown. The coefficient of static friction is μs = 0.7 between block and surface, while the coefficient of kinematic fraction is μk = 0.4. 1) Draw free-body diagram for both block (identify all the forces on the two objects 2) What is the maximum mass m for the hanging block so that no sliding occurs? 3) If...
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string....
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string. When a horizontal force F = 105 N is applied to m1 as shown in the figure below, the acceleration of the system is 3.20 m/s2 towards the left and the tension in the string connecting the two blocks is 62.0 N. The blocks are moving on a rough surface with an unknown coefficient of kinetic friction. Determine the coefficient of kinetic friction between...
4.) Find the accelerations (magnitude and direction) of each of the following systems. Show your work...
4.) Find the accelerations (magnitude and direction) of each of the following systems. Show your work for credit. [That is at bare minimum: (i) draw appropriate free body diagrams; (ii) write down Newton's second law; (iii) solve the resulting equation(s) to find the acceleration.] c.) A block of mass 10 kg hanging from a spring with spring constant ks= 1000 N / m that is attached to the roof of a moving elevator and is stretched 5 cm beyond its...