Question

The electric potential in a region of space is V=( 260 x2− 160 y2)V, where x...

The electric potential in a region of space is V=( 260 x2− 160 y2)V, where x and y are in meters. What is the strength of the electric field at  (x,y)=(2.0m,2.0m) ?

What is the direction of the electric field at  (x,y)=(2.0m,2.0m)? Give the direction as an angle (in degrees) counterclockwise from the positive x-axis.

Homework Answers

Answer #1

= ( 2 * 260 * x)

at x=2 , = 2*260*2 = 1040 V/m

= ( - 2* 160 * y)

at y = 2 , = - 2 * 160 * 2 = -640 V/m

= ( 1040 , -640 )

= 31.6 degrees counterclockwise from positive x axis

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The electric potential in a region of space is V=( 260 x2− 160 y2)V, where x...
The electric potential in a region of space is V=( 260 x2− 160 y2)V, where x and y are in meters. What is the direction of the electric field at (x,y)=(2.0m,2.0m)? Give the direction as an angle (in degrees) counterclockwise from the positive x-axis. THe strenght of the electric field is 1200 V/m.
In a certain region of space the electric potential is given by V=+Ax2y−Bxy2, where A = 5.00 V/m3 and B = 8.00 V/m3. Calculate the...
In a certain region of space the electric potential is given by V=+Ax2y−Bxy2, where A = 5.00 V/m3 and B = 8.00 V/m3. Calculate the magnitude of the electric field at the point in the region that has cordinates x = 2.20 m, y = 0.400 m, and z = 0 Calculate the direction angle of the electric field at the point in the region that has cordinates x = 2.20 m, y = 0.400 m, and z = 0.
The electric potential in a region of space is given by V ( x,y,z ) =...
The electric potential in a region of space is given by V ( x,y,z ) = -x^2 + 2y^2 + 15. If a 5 Coulomb particle is placed at position (x,y,z)=(-2,-2,0), what is the magnitude and direction of the force it experiences?
In some region of space the electric potential is V(x) = 2sin(2x) + 2x. What is...
In some region of space the electric potential is V(x) = 2sin(2x) + 2x. What is the electric field in this region? What would an electron do if placed at x = pi/3 m, move left, right, or stand still?
A uniform electric field of magnitude 260 V/m is directed in the positive x direction. A...
A uniform electric field of magnitude 260 V/m is directed in the positive x direction. A +12.0 µC charge moves from the origin to the point (x, y) = (20.0 cm, 50.0 cm). (a) What is the change in the potential energy of the charge field system? ______ J (b) Through what potential difference does the charge move? ______ V Full, detailed solutions please!
1. A proton is released in a region in space where there is an electric potential....
1. A proton is released in a region in space where there is an electric potential. Describe the subsequent motion of the proton. 2. In a certain region of space, the electric field is zero. From this fact, what can you conclude about the electric potential in this region? (a) It is zero. (b) It does not vary with position. (c) It is positive. (d) It is negative. (e) None of those answers is necessarily true. please provide throughout explanation
The electric potential in a region of space as a function of position x is given...
The electric potential in a region of space as a function of position x is given by the equation V(x) = αx2 + βx - γ, where α = 2V/m2, β = 7V/m, and γ = 15V. All nonelectrical forces are negligible. An electron starts at rest at x = 0 and travels to x = 20 m. Calculate the magnitude of the work done on the electron by the electric field during this process. Calculate the speed of the...
The potential in a region between x = 0 and x = 6.00 m is V...
The potential in a region between x = 0 and x = 6.00 m is V = a + bx, where a = 19.4 V and b = -6.70 V/m. (a) Determine the potential at x = 0. V Determine the potential at x = 3.00 m. V Determine the potential at x = 6.00 m. V (b) Determine the magnitude and direction of the electric field at x = 0. magnitude V/m direction ---Select--- +x -x Determine the magnitude...
An electron is accelerated in the positive x direction through a potential difference of 160 V....
An electron is accelerated in the positive x direction through a potential difference of 160 V. It then enters a region with a uniform magnetic field of 0.80 T in the positive z direction. (a) What is the speed of the electron? (b) What is the magnitude and direction of the magnetic force on the electron?
The electric potential in a region is given by V(x,y,z) = -10.0x2 + 20.0xyz + 6.0y3...
The electric potential in a region is given by V(x,y,z) = -10.0x2 + 20.0xyz + 6.0y3 a) Find the electric field that produces this potential? b) Find the amount of charge contained within a cubic region in space 20 cm on a side and centered at the point (10.0 cm, 10.0 cm, 10.0 cm).