Question

A space pod circles a space station at the end of a long tether line. (a)...

A space pod circles a space station at the end of a long tether line.

(a) How will the linear speed of the pod compare with its original speed when the line has

been pulled in to half its length?

(b) How will the linear speed compare when the line is pulled in to one-tenth its original

length?

Homework Answers

Answer #1

Let the initial velocity and length are respectively. Then Initial angular momentum will be

When the lie has been pull into a half its length then there won't be any external torque hence angular momentum will remain constant. Then

Given that hence

Hence linear velocity becomes twice of initial velocity.

(b)

When the lie has been pull into a one-tenth of its length then there won't be any external torque hence angular momentum will remain constant. Then

Given that hence

Hence linear velocity becomes ten times of initial velocity.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The International Space Station orbits the earth at an altitude of 400 km and circles the...
The International Space Station orbits the earth at an altitude of 400 km and circles the earth in 90 minutes. Assume the speed of the orbiting Space Station remains constant. a) What is the angular speed, in rad/s, and the linear speed, in km/h, of the Space Station while in orbit? b) What is the acceleration of the Space Station, in m/s2 , expressed in normal and tangential coordinates?
A.) Consider a non-rotating space station in the shape of a long thin uniform rod of...
A.) Consider a non-rotating space station in the shape of a long thin uniform rod of mass 4.20 x 10^6 kg and length 953 meters. Rocket motors on both ends of the rod are ignited, applying a constant force of F = 4.40 x 10^5 N to each end of the rod as shown in the diagram, causing the station to rotate about its center. If the motors are left running for 1 minutes and 26 seconds before shutting off,...
A.) Consider a non-rotating space station in the shape of a long thin uniform rod of...
A.) Consider a non-rotating space station in the shape of a long thin uniform rod of mass 4.96 x 10^6 kg and length 530 meters. Rocket motors on both ends of the rod are ignited, applying a constant force of F = 4.99 x 10^5 N to each end of the rod as shown in the diagram, causing the station to rotate about its center. If the motors are left running for 1 minutes and 28 seconds before shutting off,...
Consider a non-rotating space station in the shape of a long thin uniform rod of mass...
Consider a non-rotating space station in the shape of a long thin uniform rod of mass 6.65 x 10^6 kg and length 574 meters. Rocket motors on both ends of the rod are ignited, applying a constant force of F = 9.48 x 10^5 N to each end of the rod as shown in the diagram, causing the station to rotate about its center. If the motors are left running for 2 minutes and 21 seconds before shutting off, then...
Artificial gravity is a must for any space station if humans are to live there for...
Artificial gravity is a must for any space station if humans are to live there for any extended length of time. Without artificial gravity, human growth is stunted and biological functions break down. An effective way to create artificial gravity is through the use of a rotating enclosed cylinder, as shown in the figure. Humans walk on the inside of the outer edge of the cylinder, which has a diameter of ?=3535 m that is large enough such that its...
This time we have a non-rotating space station in the shape of a long thin uniform...
This time we have a non-rotating space station in the shape of a long thin uniform rod of mass 1.88 x 10^6 kg and length 1447 meters. Small probes of mass 9779 kg are periodically launched in pairs from two points on the rod-shaped part of the station as shown, launching at a speed of 3576 m/s with respect to the launch points, which are each located 412 m from the center of the rod. After 17 pairs of probes...
1- The International Space Station (m = 4.5 x 105 kg) orbits at an altitude of...
1- The International Space Station (m = 4.5 x 105 kg) orbits at an altitude of 415 km above the Earth’s surface. (a) Does the orbital speed of the station depend on its mass? Explain. (b) Find the speed of the station in its orbit (c) How much time does it take for the station to complete one orbit of the Earth?
Question 7 This time we have a non-rotating space station in the shape of a long...
Question 7 This time we have a non-rotating space station in the shape of a long thin uniform rod of mass 3.73 x 10^6 kg and length 1428 meters. Small probes of mass 7553 kg are periodically launched in pairs from two points on the rod-shaped part of the station as shown, launching at a speed of 4962 m/s with respect to the launch points, which are each located 384 m from the center of the rod. After 13 pairs...
An astronaut stands on the inner surface of the outer wall of a rotating space station...
An astronaut stands on the inner surface of the outer wall of a rotating space station which has a radius R of 1000 metres. The space station rotates such that the astronaut experiences artificial gravity of 10 m/s2. (a) Sketch and describe the forces acting on the astronaut according to the astronaut. (b) Sketch and describe the forces acting on the astronaut according to an inertial observer. (c) How long does it take the space station to complete one rotation?...
1. Dynamics and artificial gravity. The space station has two thrusters pointed in opposite directions. They...
1. Dynamics and artificial gravity. The space station has two thrusters pointed in opposite directions. They operate by expelling propellant at high speed. The effect is that there is a force of magnitude F0 on the two ends of the space station in opposite directions, which causes the entire object to start rotating. The thrusters will stop firing when the artificial gravity created on the space station (described below) reaches the required value. Upward force, magnitude F0 Downward force, magnitude...