Question

A neutral hollow spherical conducting shell of inner radius 1.00 cm and outer radius 3.00 cm...

A neutral hollow spherical conducting shell of inner radius 1.00 cm and outer radius 3.00 cm has a +2.00-µC point charge placed at its center. Find the surface charge density how does the magnitude of the charge and radius relate? How does a -2.00µC get involved in this problem?

Homework Answers

Answer #1

so the inner shell is closer to the +2.00μ C charge so that will attract negative charges the inner shell would have a charge of -2.00μ C

Charge density is given interns of charge and radius(surface area).

Charge density = charge/surface area

surface area of a sphere=4πr^2

so for the inner surface 4πr^2=4π(1 x 10^-2)^2=.00126 m^2

so the charge density is -2.00μ C/.00126 m^2

=-0.00159 C/m^2

so for the outer shell the charges have to equal 0 so if the inner shell has a -2.00μ C charge then the outer shell has a +2.00μ C charge

find the surface area 4πr^2=4π(3 x 10^-2)^2=0.0113 m^2

then the charge density is +2.00μ C/0.0113m^2

=+0.000177 C/m^2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider two neutral, hollow conducting spherical shells. The inner shell will be denoted by S1 and...
Consider two neutral, hollow conducting spherical shells. The inner shell will be denoted by S1 and the outer shell will be denoted by S2. The inner radius of S1 is r1. The outer radius of S1 is r2. The inner radius of S2 is r3 and the outer radius of S2 is r4. S1 and S2 are concentric with S1 contained within S2. S1 has a total charge of Q1 and S2 has a total charge of Q2. Find: a)...
A conducting spherical shell of inner radius and outer radius has a charge Q on it....
A conducting spherical shell of inner radius and outer radius has a charge Q on it. The flux through a concentric spherical surface of radius is . An additional charge, also Q, is then added to the sphere. What is the change in flux through a concentric spherical surface of radius when the additional charge is placed on the conducting shell?
A spherical, non-conducting shell of inner radius r1 = 7 cm and outer radius r2= 16...
A spherical, non-conducting shell of inner radius r1 = 7 cm and outer radius r2= 16 cm carries a total charge Q = 18 nC distributed uniformly throughout the volume of the shell. What is the magnitude of the electric field at a distance r = 11 cm from the center of the shell? (k = 1/4πε0 = 8.99 × 109 N.m2/C2)
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -2q and the outer shell has a total charge of +4q .
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -1q and the outer shell has a total charge of +3q. Select True or False for the following statements. True False The radial component of the electric field in the region r > dis given by +2q/(4πε0r2). True False The total charge on...
A nonconducting spherical shell, with an inner radius of 7.1 cm and an outer radius of...
A nonconducting spherical shell, with an inner radius of 7.1 cm and an outer radius of 11.4 cm, has charge spread nonuniformly through its volume between its inner and outer surfaces. The volume charge density ρ is the charge per unit volume, with the unit coulomb per cubic meter. For this shell ρ = b/r, where r is the distance in meters from the center of the shell and b = 3.8 μC/m2. What is the net charge in the...
A conducting sphere is placed within a conducting spherical shell. The conductors are in electrostatic equilibrium....
A conducting sphere is placed within a conducting spherical shell. The conductors are in electrostatic equilibrium. As shown in the image, the inner sphere has a radius of 1.50 cm, the inner radius of the spherical shell is 2.25 cm, and the outer radius of the shell is 2.75 cm. The inner sphere has a charge of 300 nC and the spherical shell has zero net charge. Take the value of k as 8.99 × 109 N·m2/C2. 13. Determine the...
A hollow non conducting spherical shell A (from r = 2cm to r= 3cm) with a...
A hollow non conducting spherical shell A (from r = 2cm to r= 3cm) with a charge distribution of rho= 2r (c/m^3) is surrounded by a larger concentric spherical neutral conducting shell of radius (r= 4 cm to r = 5cm) . If the inner charge is Q find the electric field in the region between A and B as a function of the distance r. what is the distribution of charges on the inner and outer surfaces of shell...
A hollow, conducting sphere with an outer radius of 0.260m and an inner radius of 0.207m...
A hollow, conducting sphere with an outer radius of 0.260m and an inner radius of 0.207m has a uniform surface charge density of +6.79
A hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of...
A hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of 0.200 m has a uniform surface charge density of +6.47 × 10−6 C/m2. A charge of -0.400 μC is now introduced into the cavity inside the sphere. a)What is the new charge density on the outside of the sphere? b)Calculate the strength of the electric field just outside the sphere c)What is the electric flux through a spherical surface just inside the inner surface...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT