Question

A very thin wire of length L, having a total charge of Q -uniformly distributed- lies...

A very thin wire of length L, having a total charge of Q -uniformly distributed- lies along the x-axis, with it's right end at x=L/6 A: Draw a FBD B: Label all known and unknown variables. C: Set up an integral to determine the electric field at a point on the y-axis where y=10 cm. above the wire. Integral should be in terms of L,Q,H, the integration variable and physical constants. Do not evaluate the integral but instead explain your reasoning and support your work with fundamental physics principles and definitions.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Positive charge Q is distributed uniformly along a rod of length L that lies along the...
Positive charge Q is distributed uniformly along a rod of length L that lies along the x-axis from x=L to x=2L. How much charge is contained within a segment of the rod of length dx? Integrate to find the total electric potential at the origin (x=0) due to the rod. Express your answer in terms of the electric constant ϵ0epsilon_0 and variables Q,L
A rod (length L, total charge +Q) with charge density lambda = a(y+b), where a and...
A rod (length L, total charge +Q) with charge density lambda = a(y+b), where a and b are constants, is positioned along the y-axis such that the upper end is at the origin. (a) Determine the electric field (magnitude and direction) at point P, on the y-axis, distance b from the upper end of the rod (b) Set up, but do not integrate, an integral that would allow you to determine the electric potential at point P. (c) Extra credit:...
Positive electric charge QQ is distributed uniformly along a thin rod of length 2aa. The rod...
Positive electric charge QQ is distributed uniformly along a thin rod of length 2aa. The rod lies along the xx-axis between x=−ax=−a and x=+ax=+a (Figure 1). Calculate how much work you must do to bring a positive point charge qq from infinity to the point x=+Lx=+L on the xx-axis, where L>aL>a. What does your result for the potential energy U(x=+L) become in the limit a→0? Express your answer in terms of some or all of the variables Q, q, a,...
3) A thin ring made of uniformly charged insulating material has total charge Q and radius...
3) A thin ring made of uniformly charged insulating material has total charge Q and radius R. The ring is positioned along the x-y plane of a 3d coordinate system such that the center of the ring is at the origin of the coordinate system. (a) Determine an expression for the potential at an arbitrary location along the z-axis in terms of Q, R, and z. (b) Use this expression to determine an expression for the magnitude of the electric...
Physics 207 Quiz 3 A)a ring-shaped thin wire of radius R carries a total charge Q...
Physics 207 Quiz 3 A)a ring-shaped thin wire of radius R carries a total charge Q uniformly distributed around it.find the electric field E at a point P that lies on the axis of he ring at a distance x from its center. B) According to your formula, how much is the field at the center of the ring C)How much is the field when x is much larger than R?
A total charge Q is uniformly distributed, with surface charge density, over a very thin disk...
A total charge Q is uniformly distributed, with surface charge density, over a very thin disk of radius R. The electric field at a distance d along the disk axis is given by E where n is a normal unit vector perpendicular to the disk. What is the best approximation for the electric field magnitude E at large distances from the disk?
A rod (length L, total charge +Q) with charge density lambda = a(y+b), where a and...
A rod (length L, total charge +Q) with charge density lambda = a(y+b), where a and b are constants, is positioned along the y-axis such that the upper end is at the origin. a. Determine the electrical field (magnitude and direction) at point P, on the y-axis, distance b from the upper end of the rod. b. Set up an integral that would allow you to determine the electrical potential at point P. c. Determine constant a in terms of...
A thin rod of length l and uniform charge per unit length λ lies along the...
A thin rod of length l and uniform charge per unit length λ lies along the x axis as shown figure. (a) Show that the electric field at point P, a distance y from the rod, along the perpendicular bisector has no x component and is given by E=(2kλsinθ0)/y. (b) Using your result to (a), show that the field of a rod of infinite length is given by E=2kλ/y.
A thin insulating rod of length L has a charge Q spread uniformly along it. Point...
A thin insulating rod of length L has a charge Q spread uniformly along it. Point P is at a distance R from the middle point of the rod. What is the magnitude of the electric field, E, at point P?
A positive electric charge Qis spread out uniformly along a wire of length Lplaced on the...
A positive electric charge Qis spread out uniformly along a wire of length Lplaced on the x-axis, with one end of the wire located at x=-L/2and the other at x=+L/2. Today we are going to find the electric field E=Exi+Eyjlocated at x=0,y=-adirectly below the midpoint of the wire. We will again use the idea of superposition: the total electric field at the point x=0,y=-a is due to the sum of the small electric fields produced by each piece of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT