Question

The drawing shows two boxes resting on frictionless ramps. One box is relatively light and sits...

The drawing shows two boxes resting on frictionless ramps. One box is relatively light and sits on a steep ramp. The other box is heavier and rests on a ramp that is less steep. The boxes are released from rest at A and allowed to slide down the ramps. The two boxes have masses of 9 and 43 kg. If A and B are 4.0 and 0.5 m, respectively, above the ground, determine the speed of (a) the lighter box and (b) the heavier box when each reaches B. (c)What is the ratio of the kinetic energy of the heavier box to that of the lighter box at B?

Homework Answers

Answer #1

as vertical distance covered by both the boxes, h = 4 - 0.5 = 3.5 m

also, there exists no any friction loss => change in potential energy = change in kinetic energy

=> mgh = 0.5mv2 => v = sqrt(2gh)

a) speed of lighter box, vL= sqrt(2 x 9.8 x 3.5) = 8.2825 m/s

b) speed of heavier box, vH = sqrt(2 x 9.8 x 3.5) = 8.2825 m/s

c) ratio of the kinetic energy of the heavier box to that of the lighter box at B = 0.5mHvH2/(0.5mLvL2)

= mH/mL = 43/9 = 4.7777778

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The drawing shows two boxes resting on frictionless ramps. One box is relatively light and sits...
The drawing shows two boxes resting on frictionless ramps. One box is relatively light and sits on a steep ramp. The other box is heavier and rests on a ramp that is less steep. The boxes are released from rest at A and allowed to slide down the ramps. The two boxes have masses of 14 and 45 kg. If A and B are hA = 4.0 and hB = 1.7 m, respectively, above the ground, determine the speed of...
The drawing shows two boxes resting on frictionless ramps. One box is relatively light and sits...
The drawing shows two boxes resting on frictionless ramps. One box is relatively light and sits on a steep ramp. The other box is heavier and rests on a ramp that is less steep. The boxes are released from rest at A and allowed to slide down the ramps. The two boxes have masses of 8 and 32 kg. If A and B are 4.0 and 1.5 m, respectively, above the ground, determine the speed of (a) the lighter box...
Two boxes are connected by a rope strung over a pulley. Box A with a mass...
Two boxes are connected by a rope strung over a pulley. Box A with a mass of 5.0 kg sits on the surface of a plane inclined with an angle of 33 degrees. The coefficient of static and kinetic friction between the box A and the surface it sits on is 0.32 and 0.20 respectively. The rope connecting Box A and Box B is looped over a frictionless pulley at the top of the incline and Box B hangs free...
The drawing shows two frictionless inclines that begin at ground level (h = 0 m) and...
The drawing shows two frictionless inclines that begin at ground level (h = 0 m) and slope upward at the same angle θ. One track is longer than the other, however. Identical blocks are projected up each track with the same initial speed v0. On the longer track the block slides upward until it reaches a maximum height H above the ground. On the shorter track the block slides upward, flies off the end of the track at a height...
Two boxes are stacked, with box B placed on top of box A. If box A...
Two boxes are stacked, with box B placed on top of box A. If box A is pushed such that both boxes move with a decreasing speed, is there any friction on either box? (a) Kinetic friction on box A and no friction on box B (b) Kinetic friction on box A and static friction on box B (c) Kinetic friction on box A and kinetic friction on box B (d) Static friction on box A and kinetic friction on...
The drawing shows two frictionless inclines that begin at ground level (h = 0 m) and...
The drawing shows two frictionless inclines that begin at ground level (h = 0 m) and slope upward at the same angle θ. One track is longer than the other, however. Identical blocks are projected up each track with the same initial speed v0. On the longer track the block slides upward until it reaches a maximum height H above the ground. On the shorter track the block slides upward, flies off the end of the track at a height...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT