Question

A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...

A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V Volts. (C is the capacitance and U is the stored energy.) Select true or false for each statement.

1)With the capacitor connected to the battery, inserting a dielectric with κ > 1 will decrease U.

2)With the capacitor connected to the battery, decreasing d increases C.

3)After being disconnected from the battery, decreasing d increases C.

4)With the capacitor connected to the battery, inserting a dielectic with κ > 1 will decrease Q.

5)After being disconnected from the battery, increasing d decreases V.

6)With the capacitor connected to the battery, decreasing d decreases Q.

Can someone explain those relations pls?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. After being disconnected from the battery, inserting a dielectric with κ will increase U. After being disconnected from the battery, inserting a dielectric with κ...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. 1. After being disconnected from the battery, inserting a dielectric with ? will decrease U. 2.With the capacitor connected to the battery, decreasing d increases...
A parallel-plate capacitor with plate separation d is connected to a battery that provides a potential...
A parallel-plate capacitor with plate separation d is connected to a battery that provides a potential difference ε. While still connected to the battery, the plate separation is increased to 2d. a) Does the potential difference across the capacitor change as the separation increases? If so, then by what factor? If not, then why not? b) Does the capacitance change as the separation increases? If so, then by what factor? If not, then why not? c) Does the capacitor charge...
1 A parallel plate capacitor is connected to a battery and becomes fully charged the capacitor...
1 A parallel plate capacitor is connected to a battery and becomes fully charged the capacitor is then disconnected and the separation between the plates is halved in such a way that so charge leaks off As the plate separation is being halved which of the following parameters remains constant? An air filled k=1 ideal parallel plate capacitor has a capacitance of C. If the area of the plates is doubled insert a dielectric material k=2 and the distance between...
A parallel plate capacitor has plates with equal and opposite charges ±Q , which are initially...
A parallel plate capacitor has plates with equal and opposite charges ±Q , which are initially separated by a distance d . The capacitor is not connected to a battery. Then, the plates are moved farther apart so they are now separated by a distance 2d and also a dielectric with dielectric constant κ=2 that fills the entire space in the gap is inserted. What happens to the stored energy U and the potential difference between the plates ΔV=V+−V− after...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 8.00 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 5.00 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part A- Find the energy U1 of the dielectric-filled capacitor. Part B- The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d = 7.00 mm and dielectric constant k = 5.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part A Find the energy U1 of the dielectric-filled capacitor. Part B The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 7.00 mm and dielectric constant k = 5.00. The capacitor is connected to a battery that creates a constant voltage V = 10.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . a. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the...
A dielectric-filled parallel-plate capacitor has plate area A = 15.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 15.0 cm2 , plate separation d = 6.00 mm and dielectric constant k = 2.00. The capacitor is connected to a battery that creates a constant voltage V = 12.5 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . A) Find the energy U1 of the dielectric-filled capacitor. Express your answer numerically in joules. U1 = __J B) The dielectric plate is now slowly pulled out of the capacitor,...
A 7 volt battery is connected to a parallel plate capacitor with an initial capacitance of...
A 7 volt battery is connected to a parallel plate capacitor with an initial capacitance of 7 micro-farads without a dielectric. While still connected to the battery, the sheets are moved a factor of 5 times further apart and a dielectric with a dielectric constant of 1.6 is inserted between the sheets. Then, the battery is disconnected, and after the battery is disconnected, the dielectric is removed and the sheets are brought a factor of 3 times closer together. What...