Question

Part A. You find that if you place charges of ± 1.10 μC on two separated...

Part A. You find that if you place charges of ± 1.10 μC on two separated metal objects, the potential difference between them is 10.3 V . What is their capacitance?

Part B. A capacitor has a capacitance of 7.32 μF . What amount of excess charge must be placed on each of its plates to make the potential difference between the plates equal to 24.6 V ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
QUESTION 1: A +1.80 μC point charge is sitting at the origin. A: What is the...
QUESTION 1: A +1.80 μC point charge is sitting at the origin. A: What is the radial distance between the 500 V equipotential surface and the 1000 V surface? Express your answer in meters to three significant figures. B: What is the distance between the 1000 V surface and the 1500 V surface? Express your answer in meters to three significant figures. C: Explain why the answers to Part A and Part B are not the same. QUESTION 2: Here...
Two large, parallel, metal plates carry opposite charges of equal magnitude. They are separated by a...
Two large, parallel, metal plates carry opposite charges of equal magnitude. They are separated by a distance of 45.0 mm , and the potential difference between them is 365 V (A) What is the magnitude of the electric field (assumed to be uniform) in the region between the plates? (B) What is the magnitude of the force this field exerts on a particle with a charge of 2.10 nC ? (C) Use the results of part (b) to compute the...
Two charges, q1 = 5 μC and q2 = 7 μC, are separated by 25 cm....
Two charges, q1 = 5 μC and q2 = 7 μC, are separated by 25 cm. Where should a third charge be placed on the line between them such that the resultant force on it will be zero? Does it matter if the third charge is positive or negative?
A capacitor consists of two square metal plates of side 200 mm, separated by an air...
A capacitor consists of two square metal plates of side 200 mm, separated by an air space 2.0 mm wide. The capacitor is charged to a voltage of 200 V and a sheet of glass having a relative permittivity of 6 is placed between the metal plates immediately they are disconnected from the supply. Calculate: (a) the capacitance with air dielectric; (b) the capacitance with glass dielectric; (c) the voltage across the capacitor after the glass plate has been inserted;...
An air-filled capacitor consists of two parallel plates, each with an area of 7.6 cm2, separated...
An air-filled capacitor consists of two parallel plates, each with an area of 7.6 cm2, separated by a distance of 2.20 mm. (a) If a 18.0 V potential difference is applied to these plates, calculate the electric field between the plates. kV/m (b) What is the surface charge density? nC/m2 (c) What is the capacitance? pF (d) Find the charge on each plate. pC
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated...
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated by a distance of 1.70 mm. A 15.0-V potential difference is applied to these plates. (a) Calculate the electric field between the plates. kV/m (b) Calculate the surface charge density. nC/m2 (c) Calculate the capacitance. pF (d) Calculate the charge on each plate. pC
1. Two parallel conducting circle plates with radiuses of 35.4 centimeters are separated by 32μm thick...
1. Two parallel conducting circle plates with radiuses of 35.4 centimeters are separated by 32μm thick layer of dielectric material. The plates in this configuration store 8.4 μC of charge at 12.4 V of potential. A)What is the dielectric constant of the material between the plates? B) how much energy is added to the capacitor if plate separation is increased so that the voltage is now 51 V. (Assume the capacitor is disconnected from the battery so that its charge...
A potential difference of 330 V is applied to a series connection of two capacitors, of...
A potential difference of 330 V is applied to a series connection of two capacitors, of capacitance C1 = 1.60 μF and capacitance C2 = 8.20 μF. (a) What is the charge q1 on capacitor 1? C (b) What is the potential difference V1 across capacitor 1? V (c) What is the charge q2 on capacitor 2? C (d) What is the potential difference V2 on capacitor 2? V The charged capacitors are then disconnected from each other and from...
A parallel plate capacitor has plates of area A =0.075 m2 separated by distance d =2.30...
A parallel plate capacitor has plates of area A =0.075 m2 separated by distance d =2.30 ✕ 10−5 m and is attached to a battery with potential difference ΔV = 14 V.(The permittivity of free space is εo= 8.85 ✕ 10−12 C2/N·m2). (a)Calculate the capacitance (in F) if the space between the plates is filled with air. (b) What is the electric field between the plates of the capacitor? Suppose that this capacitor is replaced with another with capacitance C...
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated...
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated by a distance of 1.40 mm. If a 22.4-V potential difference is applied to these plates, calculate the following. (a) the electric field between the plates magnitude     kV/m direction     ---Select--- from the positive plate to the negative plate from the negative plate to the positive plate (b) the capacitance   pF (c) the charge on each plate