Question

(a) Two particles which have the same magnitude charge but opposite sign are held 9.00 nm...

(a) Two particles which have the same magnitude charge but opposite sign are held 9.00 nm apart. Particle I is then released while Particle II is held steady; the released particle has a mass of 1.02 10-22 kg. Particle I's speed is 108 km/s when it is 4.5 nm away from Particle II. What is the magnitude of the charge on one of the particles?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two particles which have the same magnitude charge but opposite sign are held r = 7...
Two particles which have the same magnitude charge but opposite sign are held r = 7 nm apart. Particle I is then released while Particle II is held steady; the released particle has a mass of 8.72 × 10-23 kg. Particle I's speed is 110 km/s when it is 0.74r away from Particle II. 1. What is the magnitude of the charge on one of the particles? 2. If the particles are still initially held 7 nm apart but both...
Three identical particles with the same charge q and mass m are held at the corners...
Three identical particles with the same charge q and mass m are held at the corners of an equilateral triangle with sides d as shown: a) If all three particles are released simultaneously, what is their speed when they have traveled a large distance (effectively an infinite distance) from each other? b) Suppose instead that the particles are released one at a time. The first one is released, and when it is at a large distance away the second one...
Two point-like particles with equal but opposite charge are placed 18.3 cm apart and released. The...
Two point-like particles with equal but opposite charge are placed 18.3 cm apart and released. The first particle has a mass of 19.2 g and initially accelerates toward the second particle at 6.78 m/s2. The second particle initially accelerates toward the first at 2.11 m/s2. Find the magnitude of the charge on each particle, and the mass of the second particle. [ans. 6.96×10-7 C, 61.7 g]
Two equally charged particles, held 4.0 × 10-3 m apart, are released from rest. The initial...
Two equally charged particles, held 4.0 × 10-3 m apart, are released from rest. The initial acceleration of the first particle is observed to be 7.3 m/s2 and that of the second to be 8.4 m/s2. If the mass of the first particle is 8.5 × 10-7 kg, what are (a) the mass of the second particle and (b) the magnitude of the charge of each particle?
Two equally charged particles, held 4.0 × 10-3 m apart, are released from rest. The initial...
Two equally charged particles, held 4.0 × 10-3 m apart, are released from rest. The initial acceleration of the first particle is observed to be 5.5 m/s2 and that of the second to be 9.0 m/s2. If the mass of the first particle is 7.8 × 10-7 kg, what are (a) the mass of the second particle and (b) the magnitude of the charge of each particle?
Two equally charged particles are held 4.1 ✕ 10−3 m apart and then released from rest. The initial acceleration of the...
Two equally charged particles are held 4.1 ✕ 10−3 m apart and then released from rest. The initial acceleration of the first particle is observed to be 5.5 m/s2 and that of the second to be 9.4 m/s2. The mass of the first particle is 6.3 ✕ 10−7 kg. (a) What is the mass of the second particle?   kg  (b) What is the magnitude of the charge of each particle?   C
Two equally charged particles, held 4.2 x 10-3 m apart, are released from rest. The initial...
Two equally charged particles, held 4.2 x 10-3 m apart, are released from rest. The initial acceleration of the first particle is observed to be 7.4 m/s2 and that of the second to be 11 m/s2. If the mass of the first particle is 5.9 x 10-7 kg, what are (a) the mass of the second particle and (b) the magnitude of the charge (in C) of each particle?
One particle has a mass of 2.11 x 10-3 kg and a charge of +8.91 μC....
One particle has a mass of 2.11 x 10-3 kg and a charge of +8.91 μC. A second particle has a mass of 7.27 x 10-3 kg and the same charge. The two particles are initially held in place and then released. The particles fly apart, and when the separation between them is 0.128 m, the speed of the 2.11 x 10-3 kg-particle is 142 m/s. Find the initial separation between the particles.
One particle has a mass of 4.58 x 10-3 kg and a charge of +6.79 μC....
One particle has a mass of 4.58 x 10-3 kg and a charge of +6.79 μC. A second particle has a mass of 8.66 x 10-3 kg and the same charge. The two particles are initially held in place and then released. The particles fly apart, and when the separation between them is 0.193 m, the speed of the 4.58 x 10-3 kg-particle is 191 m/s. Find the initial separation between the particles.
Two particles with the same mass, 70.0 g, are released from rest in space with an...
Two particles with the same mass, 70.0 g, are released from rest in space with an initial distance of 0.85 m between them. Particle A has charge 14.5 μC while particle B has charge 62.0 μC. What is the kinetic energy (in J) of particle B at the instant when the particles are 2.60 m apart? Round your answer to 2 decimal places.