Question

A hollow right angle cylinder of radius a and length L has both ends and the...

A hollow right angle cylinder of radius a and length L has both ends and the sides grounded except for a band in the middle of the side of the cylinder. The band in the middle is held at a potential of V0 and extends from the center of the side of the cylinder for a distance of L/4 in both directions. a) Find the potential everywhere inside the cylinder. b) Find the charge density on the surface of the cylinder.

Homework Answers

Answer #1

(a) Inside the hollow cylinder, E = q/2pie0 r H , for r > R where q is the charge, R is the radius of the cylinder, H is the height of the cylinder, e0 is epsilon0 . therefore, potential V will be

V = L [ E. dr] , where L is the integral, dr is the infinitesimal change in the radius

V = Lr0 [ q/2pie0r H dr] = 0r[q x logr /2pie0 H] = q x logr/2pie0H - q/2pie0H

V = q/2pie0H [ logr - 1]

(b) Surface charge density, s will be

V = 1/4pie0 L[s/ r]

also, V = q/2pie0 H [ log r - 1]

q/2pie0 H [logr - 1] = 1/4pie0 L[s/r]

2q/H [logr -1] = L[s/ r]

d[ 2q/H [logr -1]/dr = s/r

2q/H x 1/r = s/r

s = 2q/H .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A) A very long hollow cylinder has a 15 cm radius and has positive charge spread...
A) A very long hollow cylinder has a 15 cm radius and has positive charge spread evenly over its surface, amounting to a linear charge density of 7 nC/m. Apply Gauss's Law to determine the electric field at r =20 cm away from the center, in units of N/C. As usual, do not include the unit in your answer. B) A very long hollow cylinder has a 15 cm radius and has positive charge spread evenly over its surface, amounting...
Consider an infinite line with a total charge of −3Q in a length L that is...
Consider an infinite line with a total charge of −3Q in a length L that is uniformly distributed. This line charge is surrounded by a hollow conducting cylinder with no net charge that has inner radius b and outer radius c. a) Find the surface charge density on the inner and outer surfaces of the conducting cylinder. b) Determine the E at all points in space c) Determine the electric potential at all points in space for r < c....
A solid cylinder of radius R is well insulated at both ends, and its exterior surface...
A solid cylinder of radius R is well insulated at both ends, and its exterior surface at r R is held at a fixed temperature, TR. Heat is generated in the solid at a rate per unit volume given by q = r(1-r/R), where「= constant. The thermal conductivity of the solid may be assumed constant. Use the conduction equation together with arn appropriate set of boundary conditions to derive an expression for the steady- state temperature profile, T(r), in the...
1. A 30 cm radius hollow spherical conductive shell of has a surface charge density of...
1. A 30 cm radius hollow spherical conductive shell of has a surface charge density of 10 µC/m2, a point charge Q1 is in its center. Find the electric flux through the spherical surface centered at Q1: a. if the value is Q1= +3.5x10-6 C charge b. if the value is Q1= -2.5x10-6 C charge c. What would be the electric field in each case? Please explain how you got the answer, having trouble understanding this and can't seem to...
10. A spherical conductor of radius R = 1.5cm carries the charge of 45μ, (a) What...
10. A spherical conductor of radius R = 1.5cm carries the charge of 45μ, (a) What is the charge density (ρ) of the sphere? (b) Calculate the electric field at a point r = 0.5cm from the center of the sphere. (c) What is the electric field on the surface of the sphere? 11. Two capacitors C1 and C2 are in series with a voltage V across the series combination. Show that the voltages V1 and V2 across C1 and...
1. First consider a mass on an inclined slope of angle θ, and assume the motion...
1. First consider a mass on an inclined slope of angle θ, and assume the motion is frictionless. Sketch this arrangement: 2. As the mass travels down the slope it travels a distance x parallel to the slope. The change in height of the mass is therefore xsinθ. By conserving energy, equate the change of gravitational potential energy, mgh = mgxsinθ, to the kinetic energy for the mass as it goes down the slope. Then rearrange this to find an...
12. Through what angle in degrees does a 31 rpm record turn in 0.27 s 13....
12. Through what angle in degrees does a 31 rpm record turn in 0.27 s 13. Starting from rest, the same torque is applied to a solid sphere and a hollow sphere. Both spheres have the same size and mass, and both are rotating about their centers. After some time has elapsed, which sphere will be rotating faster? answer choices: a. hollow sphere b. They will be rotating equally fast c. solid sphere 14. In movies, it often happens that...
1) 2 point charges are separated by a distance of 8 cm. The left charge is...
1) 2 point charges are separated by a distance of 8 cm. The left charge is 48 mC and the right charge is -16mC. Using a full sheet of paper: draw the 2 charges separated by 8cm, centered in the sheet. (if you are missing a ruler estimate 8cm as ⅓ a paper sheet length). [6] a) Draw field lines to indicate the electric fields for this distribution. [4] b) Draw 3 equipotential surfaces, 1 each, that pass: -Through the...