Question

Show that the wave function of a particle in the infinite square well of width a...

Show that the wave function of a particle in the infinite square well of width a returns to its original form after a quantum revival time T = 4ma^2/π(hbar)

Homework Answers

Answer #1

The wavefunction of particle in the nth state of infinite potential well is

For the quantum revival time T, we have

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In this problem we are interested in the time-evolution of the states in the infinite square...
In this problem we are interested in the time-evolution of the states in the infinite square potential well. The time-independent stationary state wave functions are denoted as ψn(x) (n = 1, 2, . . .). (a) We know that the probability distribution for the particle in a stationary state is time-independent. Let us now prepare, at time t = 0, our system in a non-stationary state Ψ(x, 0) = (1/√( 2)) (ψ1(x) + ψ2(x)). Study the time-evolution of the probability...
quantum physics: Considera particle in the ground state of an infinite square well where the left...
quantum physics: Considera particle in the ground state of an infinite square well where the left half of the well rises at a linear rate to a potential of V0in a time t, and then falls back at a linear rate in a time t. What is the probability that the particle is now in the first excited state?
Given three non-interacting distinguishable in an infinite 1-D square well potential of width a. (a) Determine...
Given three non-interacting distinguishable in an infinite 1-D square well potential of width a. (a) Determine the ground wave function for the system of distinguishing and the energy of this state. (b) Determine the wave function of the first excited state and its energy.
A particle is in the ground state of an infinite square well. The potential wall at...
A particle is in the ground state of an infinite square well. The potential wall at x = L suddenly (i.e., instantaneously) moves to x = 3L. such that the well is now three times its original size. (a) Let t = 0 be at the instant of the sudden change in the potential well. What is ψ(x, 0)? (b) If you measure the energy of the particle in the new well, what are the possible energies? (c) Estimate the...
A particle is confined to the one-dimensional infinite potential well of width L. If the particle...
A particle is confined to the one-dimensional infinite potential well of width L. If the particle is in the n=2 state, what is its probability of detection between a) x=0, and x=L/4; b) x=L/4, and x=3L/4; c) x=3L/4, and x=L? Hint: You can double check your answer if you calculate the total probability of the particle being trapped in the well. Please answer as soon as possible.
Find the wave function for the ground state and first two excited states for a particle...
Find the wave function for the ground state and first two excited states for a particle in an infinitely deep square well of width a. Show that the uncertainty relation is satisfied for position and momentum.
An electron is trapped in an infinite square well potential of width 3L, which is suddenly...
An electron is trapped in an infinite square well potential of width 3L, which is suddenly compressed to a width of L, without changing the electron’s energy. After the expansion, the electron is found in the n=1 state of the narrow well. What was the value of n for the initial state of the electron in the wider well?
Consider a particle trapped in an infinite square well potential of length L. The energy states...
Consider a particle trapped in an infinite square well potential of length L. The energy states of such a particle are given by the formula: En=n^2ℏ^2π^2 /(2mL^2 ) where m is the mass of the particle. (a)By considering the change in energy of the particle as the length of the well changes calculate the force required to contain the particle. [Hint: dE=Fdx] (b)Consider the case of a hydrogen atom. This can be modeled as an electron trapped in an infinite...
Considera particle in the ground state of an infinite square well where the left half of...
Considera particle in the ground state of an infinite square well where the left half of the well rises at a linear rate to a potential of V0in a time τ, and then falls back at a linear rate in a time τ. What is the probability that the particle is now in the first excited state?
Intro to Quantum Mechanics (Free particle) a). Write the relations between the wave vector and angular...
Intro to Quantum Mechanics (Free particle) a). Write the relations between the wave vector and angular frequency of a free particle and its momentum vector and energy. b) What is the general form in one dimension of the wave function for a free particle of mass m and momentum p? c) Can this wave function ever be entirely real? If so, show how this is possible. If not, explain why not. d) What can you say about the integral of...