Question

1.) A parallel-plate capacitor has circular plates of 7.2 cm radius and 1.5 mm separation. Calculate...

1.) A parallel-plate capacitor has circular plates of 7.2 cm radius and 1.5 mm separation. Calculate the capacitance.

1.03x10^-10F Submit Answer Incorrect. Tries 4/5 Previous Tries

2.) What charge will appear on the plates if a potential difference of 6 V is applied?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that a parallel-plate capacitor has circular plates with radius R = 34 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 34 mm and a plate separation of 6.9 mm. Suppose also that a sinusoidal potential difference with a maximum value of 120 V and a frequency of 51 Hz is applied across the plates; that is, V = (120 V) sin[2π(51 Hz)t]. Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R.
Suppose that a parallel-plate capacitor has circular plates with radius R = 43 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 43 mm and a plate separation of 5.1 mm. Suppose also that a sinusoidal potential difference with a maximum value of 170 V and a frequency of 47 Hz is applied across the plates; that is, V = (170 V) sin[2?(47 Hz)t]. Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R.
Suppose that a parallel-plate capacitor has circular plates with radius R = 43 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 43 mm and a plate separation of 4.3 mm. Suppose also that a sinusoidal potential difference with a maximum value of 120 V and a frequency of 72 Hz is applied across the plates; that is, V = (120 V) sin[2π(72 Hz)t]. Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R.
Suppose that a parallel-plate capacitor has circular plates with radius R = 25.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 25.0 mm and a plate separation of 4.8 mm. Suppose also that a sinusoidal potential difference with a maximum value of 180 V and a frequency of 60 Hz is applied across the plates; that is V=(180.0 V)sin((2.*π)*(60 Hz * t)). Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. Find B(r = 12.5 mm). Find B(r = 50.0 mm). Find...
Consider a parallel-plate capacitor constructed from two circular metal plates of radius R. The plates are...
Consider a parallel-plate capacitor constructed from two circular metal plates of radius R. The plates are separated by a distance of 1.4 mm . What radius must the plates have if the capacitance of this capacitor is to be 1.5 μF ? If the separation between the plates is increased, should the radius of the plates be increased or decreased to maintain a capacitance of 1.5 μF ?
Suppose that a parallel-plate capacitor has circular plates with radius R = 75.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 75.0 mm and a plate separation of 5.2 mm. Suppose also that a sinusoidal potential difference with a maximum value of 140 V and a frequency of 60 Hz is applied across the plates; that is V=(140.0 V)sin((2.*π)*(60 Hz * t)). a) Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. b) Find B(r = 37.5 mm). c) Find B(r =...
Suppose that a parallel-plate capacitor has circular plates with radius R = 65.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 65.0 mm and a plate separation of 4.6 mm. Suppose also that a sinusoidal potential difference with a maximum value of 140 V and a frequency of 120 Hz is applied across the plates; that is V=(140.0 V)sin((2.*π)*(120 Hz * t)). a)Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. b)Find B(r = 32.5 mm). c)Find B(r = 130.0 mm). d)Find...
1.) A parallel-plate capacitor is constructed from two circular plates with diameter 5.0 cm separated by...
1.) A parallel-plate capacitor is constructed from two circular plates with diameter 5.0 cm separated by 0.20 mm. What charge will collect on the plates if the capacitor is connected to a potential difference of 35.0 V? 2.)The capacitor from the previous problem is now disconnected from the voltage source. The separation between the capacitor plates is quadrupled and an insulator is inserted between the plates. The voltage between the plates is measured to be 68.3 V. Find the dielectric...
Consider a parallel-plate capacitor constructed from two circular metal plates of radius R. The plates are...
Consider a parallel-plate capacitor constructed from two circular metal plates of radius R. The plates are separated by a distance of 1.8 mm. (a) What radius must the plates have if the capacitance of this capacitor is to be 2.6 µF? m (b) If the separation between the plates is decreased, should the radius of the plates be increased or decreased to maintain a capacitance of 2.6 µF? increased decreased Explain. This answer has not been graded yet. (c) Find...
A parallel-plate capacitor made of half-circular plates of radius 10 cm separated by 1.50 mm is...
A parallel-plate capacitor made of half-circular plates of radius 10 cm separated by 1.50 mm is charged to a potential difference of 600 volts by a battery. Then a sheet of tantalum pentoxide is pushed between the plates, completely filling the gap between them. How much additional charge flows from the battery to one of the plates when the tantalum pentoxide is inserted? Dielectric constant for tantalum pentoxide: 25
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT