Question

Two point charges Q1 = Q2 = +1.6 µC are fixed symmetrically on the x-axis at...

Two point charges Q1 = Q2 = +1.6 µC are fixed symmetrically on the x-axis at x= ±0.147m. A point particle of charge Q3 = +4.2 µC and mass m= 12 mg can move freely along the y-axis.

(a) If the particle on the y-axis is released from rest at y1 = 0.025 m, what will be its speed, in meters per second, when it reaches y2 = 0.066 m? Consider electric forces ONLY!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two point charges Q1 = Q2 = +1.3 μC are fixed symmetrically on the x-axis at...
Two point charges Q1 = Q2 = +1.3 μC are fixed symmetrically on the x-axis at x = ±0.386 m. A point particle of charge Q3 = +4.4 μC and mass m = 18 mg can move freely along the y-axis.If the particle on the y-axis is released from rest at y1 = 0.019 m, what will be its speed, in meters per second, when it reaches y2 = 0.068 m? Consider electric forces only. v =
1) A point charge Q1 = +4.4 μC is fixed in space, while a point charge...
1) A point charge Q1 = +4.4 μC is fixed in space, while a point charge Q2 = -3.3 nC, with mass 6.3 μg, is free to move around nearby. a) Calculate the electric potential energy of the system, in joules, when Q2 is located 0.44 m from Q1. b) If Q2 is released from rest at a point 0.44 m from Q1, what will be its speed, in meters per second, when it is 0.19 m from Q1? 2)...
Three point charges are on the x axis: q1 is at the origin, q2 is at...
Three point charges are on the x axis: q1 is at the origin, q2 is at x = +3.4 m, and q3 is at x = +6.5 m. Find the electrostatic potential energy of this system of charges for the following charge values. (Assume the potential energy is zero when the charges are very far from each other.) 1) (a) q1 = q2 = q3 = +4.2 µC 2) (b) q1 = q2 = +4 µC and q3 = -4...
Three point charges are on the x axis: q1 is at the origin, q2 is at...
Three point charges are on the x axis: q1 is at the origin, q2 is at x = +3.8 m, and q3 is at x = +5.1 m. Find the electrostatic potential energy of this system of charges for the following charge values. (Assume the potential energy is zero when the charges are very far from each other.) (a) q1 = q2 = q3 = +2.7 µC (b) q1 = q2 = +3.3 µC and q3 = -3.3 µC (c)...
Three point charges are on the x axis: q1 is at the origin, q2 is at...
Three point charges are on the x axis: q1 is at the origin, q2 is at x = +3.1 m, and q3 is at x = +5.8 m. Find the electrostatic potential energy of this system of charges for the following charge values. (Assume the potential energy is zero when the charges are very far from each other.) 1) q1 = q2 = q3 = +2.7 µC _____mJ 2) q1 = q2 = +2.7 µC and q3 = -2.7 µC____mJ...
Three point charges are arranged along the x-axis. Charge q1 = +3.75 µC is at the...
Three point charges are arranged along the x-axis. Charge q1 = +3.75 µC is at the origin, and charge q2 = -5.25 µC is at x = 0.300 m. Charge q3 = -9.00 µC. Where is q3 located if the net force on q1 is 6.00 N in the −x-direction?
Two point charges Q1 = 30.0 nC and Q2 = -40 nC are held fixed along...
Two point charges Q1 = 30.0 nC and Q2 = -40 nC are held fixed along the x-axis. Q1 is at x = 0 and Q2 is at x = 72.0 cm. A third particle, of mass m = 2.2 x 10-6 kg, has charge Q3 = 42µC. If Q3 is released from x = 28 cm, what is its initial acceleration?
Two point charges q1= +5.5 µC and q2= −3.5 µC are 14 cm apart along x-axis...
Two point charges q1= +5.5 µC and q2= −3.5 µC are 14 cm apart along x-axis (charge q1 is at the origin and charge q2 is at x=14 cm). 1) Discuss at what point (or points) on x-axis net electric field due to these two charges can be zero? Right side of them, left side of them, or between them? Discuss/justify your answer. 2) Find the point where the net electric field is zero. Let's call distance of this point...
Two point charges are fixed on the y axis: a negative point charge q1 = -26...
Two point charges are fixed on the y axis: a negative point charge q1 = -26 μC at y1 = +0.22 m and a positive point charge q2 at y2 = +0.39 m. A third point charge q = +9.7 μC is fixed at the origin. The net electrostatic force exerted on the charge q by the other two charges has a magnitude of 23 N and points in the +y direction. Determine the magnitude of q2.
Two charges Q1(+2.00μC)Q1(+2.00μC) and Q2(+2.00μC)Q2(+2.00μC) are placed symmetrically along the x-axis at x=±3.00cmx=±3.00cm. Consider a charge...
Two charges Q1(+2.00μC)Q1(+2.00μC) and Q2(+2.00μC)Q2(+2.00μC) are placed symmetrically along the x-axis at x=±3.00cmx=±3.00cm. Consider a charge Q3Q3 of charge +4.00μC+4.00μC and mass 10.0 mg moving along the y-axis. If Q3Q3 starts from rest at y=2.00cm,y=2.00cm, what is its speed when it reaches y=4.00cm? I need a hand written and explained solution