Question

A child is swinging a 330-g ball at the end of a 69.0-cm-long string in a...

A child is swinging a 330-g ball at the end of a 69.0-cm-long string in a vertical circle. The string can withstand a tension of 15.0 N before breaking.

(a) What is the tension in the string when the ball is at the top of the circle if its speed at that point is 3.50 m/s?
_________ N

(b) What is the maximum speed the ball can have at the bottom of the circle if the string does not break?
_________ m/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 50.0 g ball swings in a vertical circle at the end of a string of...
A 50.0 g ball swings in a vertical circle at the end of a string of length 39.8 cm. If the speed of the ball at the bottom is 5.11 m/s, what is the speed of the ball at the top? B) Find the work done by gravity on the ball as it goes from bottom to top.
An athlete swings a 3.10-kg ball horizontally on the end of a rope. The ball moves...
An athlete swings a 3.10-kg ball horizontally on the end of a rope. The ball moves in a circle of radius 0.660 m at an angular speed of 0.520 rev/s. (a) What is the tangential speed of the ball? m/s (b) What is its centripetal acceleration? m/s2 (c) If the maximum tension the rope can withstand before breaking is 136 N, what is the maximum tangential speed the ball can have? m/s
An athlete swings a 4.70-kg ball horizontally on the end of a rope. The ball moves...
An athlete swings a 4.70-kg ball horizontally on the end of a rope. The ball moves in a circle of radius 0.770 m at an angular speed of 0.670 rev/s. (a) What is the tangential speed of the ball? m/s (b) What is its centripetal acceleration? m/s2 (c) If the maximum tension the rope can withstand before breaking is 138 N, what is the maximum tangential speed the ball can have? m/s
An athlete swings a 6.50-kg ball horizontally on the end of a rope. The ball moves...
An athlete swings a 6.50-kg ball horizontally on the end of a rope. The ball moves in a circle of radius 0.830 m at an angular speed of 0.570 rev/s. (a) What is the tangential speed of the ball? _____m/s (b) What is its centripetal acceleration? _____m/s2 (c) If the maximum tension the rope can withstand before breaking is 96 N, what is the maximum tangential speed the ball can have? _____m/s
A ball swings in a vertical circle at a constant speed at the end of a...
A ball swings in a vertical circle at a constant speed at the end of a 1.5-m-long string. When the ball is at the top of the circle, the tension is 10N, at the bottom the tension is 50N. a) What is the mass of the ball? b) What is the speed of the ball?
the figure shows a 3.0 kg ball tied to the end of a 50 cm long...
the figure shows a 3.0 kg ball tied to the end of a 50 cm long string being swung in a circle in a vertical plane at constant speed. The center of the circle is h = 230 cm above the floor. The ball is swung at the minimum speed necessary to make it over the top without the string going slack. If the string is released at the instant the ball is at the top of the loop, how...
A tennis ball connected to a string is spun around in a vertical, circular path at...
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.154 kg and moves at v = 5.16 m/s. The circular path has a radius of R = 1.01 m 1) What is the magnitude of the tension in the string when the ball is at the bottom of the circle? 2) What is the magnitude of the tension in the string when the...
A ball with a mass of 1.50 kg is attached to the end of a string...
A ball with a mass of 1.50 kg is attached to the end of a string that is 0.400 m in length. You swing the ball so that it swings in a vertical circle, traveling at a speed of 4.80 m/s at the top of the circle. (a) Draw the free-body diagram of the ball. Make sure you label all your vectors and clearly indicate their direction. (b) What is the tension in the string when the ball is at...
A 5.39-kg ball hangs from the top of a vertical pole by a 2.45-m-long string. The...
A 5.39-kg ball hangs from the top of a vertical pole by a 2.45-m-long string. The ball is struck, causing it to revolve around the pole at a speed of 4.79 m/s in a horizontal circle with the string remaining taut. Calculate the angle, between 0° and 90°, that the string makes with the pole. Take g = 9.81 m/s2. What is the tension of the string?
To the end of a 50 cm long rope, a ball of 100 g, which is...
To the end of a 50 cm long rope, a ball of 100 g, which is swinging under a vertical circle, is attached under the influence of gravity. When the rope makes an angle theta = 12 ° with the ball, the ball has a speed of 2.2 m / s. a) Find the current Radial component (ar) of acceleration b) Find the magnitude of the tangential acceleration (at) when theta = 18 °. c) Find the magnitude of the...