Question

In the figure, a metal rod is forced to move with constant velocity along two parallel...

In the figure, a metal rod is forced to move with constant velocity along two parallel metal rails, connected with a strip of metal at one end. A magnetic field of magnitude B = 0.321 T points out of the page. (a) If the rails are separated by 35.4 cm and the speed of the rod is 50.8 cm/s, what is the magnitude of the emf generated in volts? (b) If the rod has a resistance of 21.7 Ω and the rails and connector have negligible resistance, what is the current in amperes in the rod? (c) At what rate is energy being transferred to thermal energy?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 5.0 cm long, 53 grams, thin metal strip is allowed to slide along two parallel...
A 5.0 cm long, 53 grams, thin metal strip is allowed to slide along two parallel rails (that contact it at its ends). A constant 0.76 T magnetic field acts perpendicular to the two rails. If the strip is pulled with a speed of 17.8 m/s an the rails are connected to each other through a 20 omega resistor, then find the induced current in the circuit. Assume that the rod and rails have negligible resistance.
As shown in the figure below, a metal rod is pulled to the right at constant...
As shown in the figure below, a metal rod is pulled to the right at constant speed v, perpendicular to a uniform magnetic field directed out of the screen. The bar rides on frictionless metal rails connected through a resistor forming a complete circuit. The length of the bar between the rails is 5 cm, the magnitude of the magnetic field is 0.4 T, the resistor has a value of 10 Ω, and the speed of the bar to the...
A conducting rod is pulled horizontally with constant force F= 3.40 N along a set of...
A conducting rod is pulled horizontally with constant force F= 3.40 N along a set of rails separated by d= 0.380 m. A uniform magnetic field B= 0.600 T is directed into the page. There is no friction between the rod and the rails, and the rod moves with constant velocity v= 4.80 m/s. Using Faraday's Law, calculate the induced emf around the loop in the figure that is caused by the changing flux. Assign clockwise to be the positive...
1) 2 point charges are separated by a distance of 8 cm. The left charge is...
1) 2 point charges are separated by a distance of 8 cm. The left charge is 48 mC and the right charge is -16mC. Using a full sheet of paper: draw the 2 charges separated by 8cm, centered in the sheet. (if you are missing a ruler estimate 8cm as ⅓ a paper sheet length). [6] a) Draw field lines to indicate the electric fields for this distribution. [4] b) Draw 3 equipotential surfaces, 1 each, that pass: -Through the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT