Question

Charge Q=+ 3.00 μC is distributed uniformly over the volume of an insulating sphere that has...

Charge Q=+ 3.00 μC is distributed uniformly over the volume of an insulating sphere that has radius R = 6.00 cm .What is the potential difference between the center of the sphere and the surface of the sphere?

Homework Answers

Answer #1

For an insulating sphere distributed by charge, the potential function at an outside point and at an inside point are different.

The potential at an outside point is given as(x>R)

x is the distance of the point from the center. The above function is for x > R or x = R

The potential at an inside point is given as (x<R)

Therefore, from the question,

So,

Potential at surface is:

The potential at the center is given by:

Therefore, potential difference is:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(physics 2) Charge Q is distributed uniformly over the volume of an insulating sphere of radius...
(physics 2) Charge Q is distributed uniformly over the volume of an insulating sphere of radius R. What is the potential difference between the center of the sphere and the surface of the sphere?
Charge Q is distributed uniformly throughout the volume of an insulating sphere that has radius R....
Charge Q is distributed uniformly throughout the volume of an insulating sphere that has radius R. What is the potential difference between the center of the sphere and the surface of the sphere?
A positive charge +Q is distributed uniformly throughout the volume of an insulating sphere with radius...
A positive charge +Q is distributed uniformly throughout the volume of an insulating sphere with radius R. Find the electric potential V at a point P a distance r from the center of the sphere. Plot the electric potential V vs. the distance r from the center of the sphere for 0 < r < 2R
An excess positive charge Q is uniformly distributed throughout the volume of an insulating solid sphere...
An excess positive charge Q is uniformly distributed throughout the volume of an insulating solid sphere of radius R = 5.0cm. The magnitude of the bold E with bold rightwards harpoon with barb upwards on top-field at a point 10.0cm from the center of the sphere is given to be 4.5x10^6 N/C. a. What is the value (in units of μC) of charge Q? b. What is the magnitude of the -field at the surface of the sphere? c. What...
A solid insulating sphere has total charge Q and radius R. The sphere's charge is distributed...
A solid insulating sphere has total charge Q and radius R. The sphere's charge is distributed uniformly throughout its volume. Let r be the radial distance measured from the center of the sphere. If E = 440 N/C at r=R/2, what is E at r=2R? Express your answer with the appropriate units.
A conducting sphere of radius R carries a net positive charge Q, uniformly distributed over the...
A conducting sphere of radius R carries a net positive charge Q, uniformly distributed over the surface of the sphere. Assuming that the electric potential is zero at an infinite distance, what is the electric potential at a distance r = R/4 from the center of the sphere? Select one: kQ/R zero kQ/4R 4kQ/R 16kQ/R
A total charge of 20.0 nC is distributed uniformly through an insulating sphere with a radius...
A total charge of 20.0 nC is distributed uniformly through an insulating sphere with a radius of 6.00 cm. The total electric flux (in N m2/C) through a concentric sphere with a radius of 3.00 cm is: K = 9 x 10+9 N.m2.C-2 , ε0 = 8.85 x 10-12 C2.N-1.m-2
A nonconducting sphere has radius R = 2.54 cm and uniformly distributed charge q = +4.89...
A nonconducting sphere has radius R = 2.54 cm and uniformly distributed charge q = +4.89 fC. Take the electric potential at the sphere's center to be V0 = 0. What is V at radial distance from the center (a) r = 1.50 cm and (b) r = R? (Hint: See an expression for the electric field.)
A solid insulating sphere of radius a = 2 cm carries a net positive charge Q...
A solid insulating sphere of radius a = 2 cm carries a net positive charge Q = 9 nC uniformly distributed throughout its volume. A conducting spherical shell of inner radius b = 4 cm and outer radius c = 6 cm is concentric with the solid sphere and carries an initial net charge 2Q. Find: a. the charge distribution on the shell when the entire system is in electrostatic equilibrium. b. theelectricfieldatpoint:(i)AwithrA =1cm,(ii)BwithrB =3cm,(iii)CwithrC =5cm from the center of...
A thin aluminum sphere of radius 25 cm has a charge of Q=150 nC uniformly distributed...
A thin aluminum sphere of radius 25 cm has a charge of Q=150 nC uniformly distributed on its surface. a) Assuming that the center of the sphere is at r=0, find expressions for the electric field for all regions of interest (r<R, and R>r), and make a plot of the electric field strength as a function of r. b) Find expressions for the electric potential for all regions of interest, and plot the electric potential as a function of r....