Question

Two speakers are located 15 meters away from each other and each emit a sound with...

Two speakers are located 15 meters away from each other and each emit a sound with a frequency of 289 hz. Along the line connecting the two speakers, determine the location of at least one loud spot and at least one quiet spot. Determine how many such locations their will be.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two speakers emit identical sounds at a frequency of 793 Hz and are placed 1.4 meters...
Two speakers emit identical sounds at a frequency of 793 Hz and are placed 1.4 meters apart from each other. How far away from one of the speakers should you stand so that the sound you hear is a maximum? A minimum? How many maxima/minima are there? (You may assume that you and the two speakers make a right triangle)
Two speakers face each other ten meters apart. They emit a middle C (256 Hz). It...
Two speakers face each other ten meters apart. They emit a middle C (256 Hz). It is 68ºF(20ºC). Describe what you hear as you walk along the straight line from one speaker to the other. Are there spots where the sound is louder or quieter? Where are those spots?
Two identical loudspeakers are situated at the same height above a horizontal xy-plane and emit sound...
Two identical loudspeakers are situated at the same height above a horizontal xy-plane and emit sound waves of frequency 1660 Hz. The speakers are located at coordinates (0,1.57) and (0,-1.57), with units in meters. A point O on the x-axis a distance x1 = 9.1 meters away (x1,0) is the location of an interference maximum. A second point P at (x1, y2) is the location of the first minimum of sound intensity when moving away from point O in the...
Two loudspeakers, 1.4 m apart, emit sound waves with the same frequency along the positive x-axis....
Two loudspeakers, 1.4 m apart, emit sound waves with the same frequency along the positive x-axis. Victor, standing on the axis to the right of the speakers, hears no sound. As the frequency is slowly tripled, Victor hears the sound go through the sequence loud-soft-loud-soft-loud before becoming quiet again. What was the original sound frequency? Assume room temperature of 20∘C.
Two sound speakers separated by 100 m face each other and vibrate in unison at a...
Two sound speakers separated by 100 m face each other and vibrate in unison at a frequency of 85 Hz. Determine three places on a line between the speakers where you cannot hear any sound.
Two loudspeakers are in phase and both producing 458-Hz sound waves 3 meters from each other....
Two loudspeakers are in phase and both producing 458-Hz sound waves 3 meters from each other. A person initially stands 1.6 meters in front      of one of the speakers. The person then walks directly away from this speaker. How far will the person have walked when they hear the combined sounds from the two speakers reach a minimum in loudness for the third time? The power output of each speaker is 2.40 mW. What is the sound intensity level...
You are standing at the midpoint between two speakers, a distance D away from each. The...
You are standing at the midpoint between two speakers, a distance D away from each. The speakers are playing the exact same sound of frequency 170 Hz in phase with each other. Describe what happens when you walk 1 m directly toward one of the speakers. Assume the speed of sound is 340 m/s. Also assume you can't hear any sounds except those produced by the speakers. You begin by hearing nothing, but the sound gets louder. Then it gets...
Suppose two speakers are arranged such that they emit identical sound waves, and are separated by...
Suppose two speakers are arranged such that they emit identical sound waves, and are separated by 4m. A microphone is positioned 3m above one of the speakers. If the speed of sound is 340 m/s, and both speakers start in phase, are turned on at the same time, and emit the same frequency, what is the lowest frequency such that the microphone picks up no sound? You may ignore amplitude reduction due to distance for this problem.
Two speakers are located at two on an unknown triangle with an observer located at the...
Two speakers are located at two on an unknown triangle with an observer located at the geometric center. You do not know either the sides nor angles, so you attach pipes that are open at both ends from each speaker to the center of the triangle. One pipe has a 4th harmonic standing wave frequency of 300 Hz, and one pipe has a 5th harmonic standing of 400 Hz. What frequency can the speakers be playing for the observer to...
Two sound sources emit sound of wavelength 1.4m in phase. One source is at 4.9m i^...
Two sound sources emit sound of wavelength 1.4m in phase. One source is at 4.9m i^ and the other is at -4.9m hati. An observer is at r⃗ =6.8mj^, a location of constructive interference, and walks to r⃗ =13.6mi^+9.4mj^. In this process how many times did the observer encounter a location of destructive interference (in other words a quiet location)? Answer:
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT