Question

An electron starts from rest 22.5 cm from a fixed point charge with Q = -5.00...

An electron starts from rest 22.5 cm from a fixed point charge with Q = -5.00 nC .

Part A: How fast will the electron be moving when it is very far away? Express your answer with the appropriate units.

v =

Homework Answers

Answer #1

Initially the potential energy of the system of charges

U = kQe/r2   (k = 9 x 109 Nm2/C2)

Whe the electron gets far away, all this potential energy gets converted into kinetic energy of the electron

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron starts from rest 0.02 m from a fixed point charge with Q= -0.23 x...
An electron starts from rest 0.02 m from a fixed point charge with Q= -0.23 x 10^-6 C. What will be the electron’s speed “very far away” from the point charge? (HINT: Assume the final distance from the point charge is close to infinity) Please explain and give details.
Consider the classic image problem with a point charge q placed a distance d above a...
Consider the classic image problem with a point charge q placed a distance d above a grounded conducting plane. The charge, which has mass m, is released from rest. How fast will it be moving when it is half as far away from the plane (d/2)?
A +3.0-nC charge Q is initially at rest a distance of 10 cm ( r1 )...
A +3.0-nC charge Q is initially at rest a distance of 10 cm ( r1 ) from a +5.0-nC charge q fixed at the origin. Naturally, the Coulomb force accelerates Q away from q, eventually reaching 15 cm ( r2 ). The charge Q is repelled by q, thus having work done on it and losing potential energy. What is the work done by the electric field between r1 and r2 ? What is the change in the potential energy...
A positive point charge q1 = +5.00×10−4 C is held at a fixed position. A small...
A positive point charge q1 = +5.00×10−4 C is held at a fixed position. A small object with mass 4.00×10−3 kg and charge q2 = −5.00×10−4 C is projected directly at q1. Ignore gravity. When q2 is 0.400 m away, its speed is 800 m/s. What is its speed when it is 0.200 m from q1? Express your answer with the appropriate units.
Two stationary positive point charges, charge 1 of magnitude 3.80 nC and charge 2 of magnitude...
Two stationary positive point charges, charge 1 of magnitude 3.80 nC and charge 2 of magnitude 1.90 nC , are separated by a distance of 53.0 cm . An electron is released from rest at the point midway between the two charges, and it moves along the line connecting the two charges. A. What is the speed v final the electron when it is 10.0 cm from charge 1? Express your answer in meters per second.
Two stationary positive point charges, charge 1 of magnitude 3.90 nC and charge 2 of magnitude...
Two stationary positive point charges, charge 1 of magnitude 3.90 nC and charge 2 of magnitude 2.00 nC , are separated by a distance of 30.0 cm . An electron is released from rest at the point midway between the two charges, and it moves along the line connecting the two charges. Part A What is the speed vfinal of the electron when it is 10.0 cm from charge 1? Express your answer in meters per second.
1. A -9.00 nC point charge and a +18.0nC point charge are 15.0 cm apart on...
1. A -9.00 nC point charge and a +18.0nC point charge are 15.0 cm apart on the x-axis. Part A: What is the electric potential at the point on the xxx-axis where the electric field is zero? Express your answer with the appropriate units. Part B: What is the magnitude of the electric field at the point on the x-axis, between the charges, where the electric potential is zero? Express your answer with the appropriate units. 2. An AA battery...
   A free electron and a free proton are exactly 1.3 cm apart. Find the magnitude of...
   A free electron and a free proton are exactly 1.3 cm apart. Find the magnitude of the acceleration of the proton. Express your answer with the appropriate units. Find the magnitude of the acceleration of the electron. Express your answer with the appropriate units. Hearing loss. Person A can barely hear a sound at a particular frequency with an intensity level of 2.4 dB. Person B, who has hearing loss, can barely hear a 14.8 dB tone with the same...
Two stationary positive point charges, charge 1 of magnitude 4.00 nC and charge 2 of magnitude...
Two stationary positive point charges, charge 1 of magnitude 4.00 nC and charge 2 of magnitude 1.55 nC, are separated by a distance of 47.0 cm . An electron is released from rest at the point midway between the two charges, and it moves along the line connecting the two charges. What is the speed vfinal of the electron when it is 10.0 cm from charge 1? Express your answer in meters per second.
Two stationary positive point charges, charge 1 of magnitude 3.70 nC and charge 2 of magnitude...
Two stationary positive point charges, charge 1 of magnitude 3.70 nC and charge 2 of magnitude 1.50 nC , are separated by a distance of 46.0 cm . An electron is released from rest at the point midway between the two charges, and it moves along the line connecting the two charges. What is the speed vfinal of the electron when it is 10.0 cm from charge 1? Express your answer in meters per second.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT